建立了一种基于贻贝仿生化学涂层的搅拌棒吸附萃取/高效液相色谱/荧光检测器(SBSE/HPLC-FLD)同时测定食用油中黄曲霉毒素B1、B2、G1、G2的方法。基于贻贝仿生化学制备多巴胺-氧化石墨烯复合物固相萃取材料,利用搅拌棒吸附萃取技术对样...建立了一种基于贻贝仿生化学涂层的搅拌棒吸附萃取/高效液相色谱/荧光检测器(SBSE/HPLC-FLD)同时测定食用油中黄曲霉毒素B1、B2、G1、G2的方法。基于贻贝仿生化学制备多巴胺-氧化石墨烯复合物固相萃取材料,利用搅拌棒吸附萃取技术对样品进行提取;以甲醇-乙腈-水(10%磷酸调至p H 3.5,体积比3∶3∶5)作为流动相,采用荧光检测器进行检测。结果显示,黄曲霉毒素B1、B2、G1、G2在0.200~10.0μg/L范围内具有良好的线性关系(相关系数r^2≥0.998 9),加标回收率为81.5%~96.9%,日内相对标准偏差(RSD)为1.7%~3.4%,日间RSD为1.9%~3.5%,方法检出限为0.025~0.050μg/L。该方法高效、灵敏、可靠,能够满足食用油中黄曲霉毒素B1、B2、G1、G2的测定要求。展开更多
目的探讨硫化铜(CuS)/氧化石墨烯(GO)/壳聚糖(CS)/纳米羟基磷灰石(nHA)复合材料(CGCHs)的抗菌和促成骨作用及其作用机制。方法采用水热法合成CuS/GO纳米颗粒,通过原位沉淀法合成CS/nHA支架和CGCHs支架,检测材料表征、光热转换性能和生...目的探讨硫化铜(CuS)/氧化石墨烯(GO)/壳聚糖(CS)/纳米羟基磷灰石(nHA)复合材料(CGCHs)的抗菌和促成骨作用及其作用机制。方法采用水热法合成CuS/GO纳米颗粒,通过原位沉淀法合成CS/nHA支架和CGCHs支架,检测材料表征、光热转换性能和生物安全性,评估CGCHs组和近红外光(NIR)照射下CGCHs(CGCHs+NIR)组的细菌抑制效果及其对细菌生物膜相关基因表达的影响,观察CGCHs和CS/nHA不同材料组的促成骨分化和成骨、破骨相关基因表达。结果CGCHs是具有高度孔隙率的三维支架,在CuS/GO浓度为200μg/mL时CGCHs同时兼具良好的红外升温效果和生物安全性。琼脂糖平板涂菌和细菌死活染色结果均表明CGCHs+NIR组抗菌性能最佳,生物膜相关基因qPCR检测证实其具有抑制细菌生物膜相关基因表达的作用。茜素红染色结果表明CGCHs具有良好的体外促成骨性能,体外共培养3、7、14、21和28 d qPCR结果表明CGCHs对成骨早期和晚期相关基因表达均具有促进作用。与破骨细胞共培养结果可观察到CGCHs具有抑制破骨细胞形成的作用,细胞凋亡检测结果进一步验证这一结论,破骨分化相关基因qPCR检测结果表明,CGCHs主要通过抑制抗酒石酸酸性磷酸酶、组织蛋白酶K、CTR、P65和P38在共培养7、14 d的表达来抑制破骨细胞的分化。结论作为纳米复合材料,CGCHs生物安全性好,具有良好的红外光热协同抗菌作用,在促成骨分化的同时抑制破骨细胞分化,有望为感染性骨缺损治疗提供新的思路。展开更多
本文以NaH_(2)PO_(2)·H_(2)O和L-抗坏血酸为还原剂,以不同脱乙酰度壳聚糖(CHS)为稳定剂,制备氧化石墨烯(GO)负载纳米铜(CuNPs)复合物(GO-CuNPs-CHS)。利用紫外-可见光谱(UV-vis)研究了壳聚糖脱乙酰度对GO-CuNPs-CHS中CuNPs尺寸形...本文以NaH_(2)PO_(2)·H_(2)O和L-抗坏血酸为还原剂,以不同脱乙酰度壳聚糖(CHS)为稳定剂,制备氧化石墨烯(GO)负载纳米铜(CuNPs)复合物(GO-CuNPs-CHS)。利用紫外-可见光谱(UV-vis)研究了壳聚糖脱乙酰度对GO-CuNPs-CHS中CuNPs尺寸形貌的影响。利用傅里叶变换红外光谱(FT-IR)、透射电子显微镜(TEM)和X射线衍射(XRD)对GO-CuNPs-CHS进行了表征,探究了其对4-硝基苯酚(4-NP)的氢转移催化性能。结果表明,使用低脱乙酰度壳聚糖为稳定剂有利于制备小粒径、近球形的CuNPs。以脱乙酰度为52.3%的壳聚糖为稳定剂制备的GO-CuNPs-N3中CuNPs的平均粒径为(9.0±1.3)nm。GO-CuNPs-CHS的氢转移催化性能随着壳聚糖脱乙酰度的降低而逐渐增强,以GO-CuNPs-N3为催化剂时仅需8 min 4-NP转化率可达到98.4%,反应速率常数可达0.6868 min^(-1),反应活化能Ea为40.5 kJ·mol^(-1)。展开更多
文摘建立了一种基于贻贝仿生化学涂层的搅拌棒吸附萃取/高效液相色谱/荧光检测器(SBSE/HPLC-FLD)同时测定食用油中黄曲霉毒素B1、B2、G1、G2的方法。基于贻贝仿生化学制备多巴胺-氧化石墨烯复合物固相萃取材料,利用搅拌棒吸附萃取技术对样品进行提取;以甲醇-乙腈-水(10%磷酸调至p H 3.5,体积比3∶3∶5)作为流动相,采用荧光检测器进行检测。结果显示,黄曲霉毒素B1、B2、G1、G2在0.200~10.0μg/L范围内具有良好的线性关系(相关系数r^2≥0.998 9),加标回收率为81.5%~96.9%,日内相对标准偏差(RSD)为1.7%~3.4%,日间RSD为1.9%~3.5%,方法检出限为0.025~0.050μg/L。该方法高效、灵敏、可靠,能够满足食用油中黄曲霉毒素B1、B2、G1、G2的测定要求。
文摘目的探讨硫化铜(CuS)/氧化石墨烯(GO)/壳聚糖(CS)/纳米羟基磷灰石(nHA)复合材料(CGCHs)的抗菌和促成骨作用及其作用机制。方法采用水热法合成CuS/GO纳米颗粒,通过原位沉淀法合成CS/nHA支架和CGCHs支架,检测材料表征、光热转换性能和生物安全性,评估CGCHs组和近红外光(NIR)照射下CGCHs(CGCHs+NIR)组的细菌抑制效果及其对细菌生物膜相关基因表达的影响,观察CGCHs和CS/nHA不同材料组的促成骨分化和成骨、破骨相关基因表达。结果CGCHs是具有高度孔隙率的三维支架,在CuS/GO浓度为200μg/mL时CGCHs同时兼具良好的红外升温效果和生物安全性。琼脂糖平板涂菌和细菌死活染色结果均表明CGCHs+NIR组抗菌性能最佳,生物膜相关基因qPCR检测证实其具有抑制细菌生物膜相关基因表达的作用。茜素红染色结果表明CGCHs具有良好的体外促成骨性能,体外共培养3、7、14、21和28 d qPCR结果表明CGCHs对成骨早期和晚期相关基因表达均具有促进作用。与破骨细胞共培养结果可观察到CGCHs具有抑制破骨细胞形成的作用,细胞凋亡检测结果进一步验证这一结论,破骨分化相关基因qPCR检测结果表明,CGCHs主要通过抑制抗酒石酸酸性磷酸酶、组织蛋白酶K、CTR、P65和P38在共培养7、14 d的表达来抑制破骨细胞的分化。结论作为纳米复合材料,CGCHs生物安全性好,具有良好的红外光热协同抗菌作用,在促成骨分化的同时抑制破骨细胞分化,有望为感染性骨缺损治疗提供新的思路。
文摘本文以NaH_(2)PO_(2)·H_(2)O和L-抗坏血酸为还原剂,以不同脱乙酰度壳聚糖(CHS)为稳定剂,制备氧化石墨烯(GO)负载纳米铜(CuNPs)复合物(GO-CuNPs-CHS)。利用紫外-可见光谱(UV-vis)研究了壳聚糖脱乙酰度对GO-CuNPs-CHS中CuNPs尺寸形貌的影响。利用傅里叶变换红外光谱(FT-IR)、透射电子显微镜(TEM)和X射线衍射(XRD)对GO-CuNPs-CHS进行了表征,探究了其对4-硝基苯酚(4-NP)的氢转移催化性能。结果表明,使用低脱乙酰度壳聚糖为稳定剂有利于制备小粒径、近球形的CuNPs。以脱乙酰度为52.3%的壳聚糖为稳定剂制备的GO-CuNPs-N3中CuNPs的平均粒径为(9.0±1.3)nm。GO-CuNPs-CHS的氢转移催化性能随着壳聚糖脱乙酰度的降低而逐渐增强,以GO-CuNPs-N3为催化剂时仅需8 min 4-NP转化率可达到98.4%,反应速率常数可达0.6868 min^(-1),反应活化能Ea为40.5 kJ·mol^(-1)。