Microwave was applied to roasting the zinc oxide fume obtained from fuming furnace for the removal of F and Cl. The effects of important parameters, such as roasting temperature, holding time and stirring speed, were ...Microwave was applied to roasting the zinc oxide fume obtained from fuming furnace for the removal of F and Cl. The effects of important parameters, such as roasting temperature, holding time and stirring speed, were investigated and the process conditions were optimized using response surface methodology (RSM). The results show that the effects of roasting temperature and holding time on the removal rate of F and Cl are the most significant, and the effect of stirring speed is the second. The defluorination rate reaches 92.6% while the dechlorination rate reaches 90.2%, under the process conditions of roasting temperature of 700 °C, holding time of 80 min and stirring speed of 120 r/min. The results indicate that the removal of F and Cl from fuming furnace production of zinc oxide fumes using microwave roasting process is feasible and reliable.展开更多
A novel heterogeneous catalyst, viscose fiber- supported cobalt phthalocyanine (Co - TDTAPc - F), was prepared by immobilizing cobalt tetra(2.4 - dichloro- 1,3, 5 -triazine)aminophtbalocyanine (Co- TDTAPc) on vi...A novel heterogeneous catalyst, viscose fiber- supported cobalt phthalocyanine (Co - TDTAPc - F), was prepared by immobilizing cobalt tetra(2.4 - dichloro- 1,3, 5 -triazine)aminophtbalocyanine (Co- TDTAPc) on viscose fibers covalcntly. The oxidative removal of chlorophenols such as 2 - chlorophenoi, 4 - chlorophenol, 2, 4 - dichlorophenol, and 2, 4, 6 - trichlorophenol was investigated in the catalytic oxidative system of Co - TDTAPc- F/H2O2. Furthermore, more than 98% of these chloropbenols were decomposed in 4 h. Phenol, oxalic acid, maleic acid, and succinic acid, etc., were detected by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrophotometer (GC - MS), and these short-chain organic acids could be further oxidized easily. The results indicated that the catalytic oxidation in the Co- TDTAPc - F/H2O2 system leaded to a deeper oxidation. In addition, a degradation pathway for chlorophenols was proposed on the basis of detection of intermediate compounds.展开更多
基金Project(51104073)supported by the National Natural Science Foundation of ChinaProject(2013AA064003)supported by the High-tech Research and Development Program of China+1 种基金Project(2014CB643404)supported by the National Basic Research Program of ChinaProject(2012HB008)supported by Yunnan Province Young Academic Technology Leader Reserve Talents,China
文摘Microwave was applied to roasting the zinc oxide fume obtained from fuming furnace for the removal of F and Cl. The effects of important parameters, such as roasting temperature, holding time and stirring speed, were investigated and the process conditions were optimized using response surface methodology (RSM). The results show that the effects of roasting temperature and holding time on the removal rate of F and Cl are the most significant, and the effect of stirring speed is the second. The defluorination rate reaches 92.6% while the dechlorination rate reaches 90.2%, under the process conditions of roasting temperature of 700 °C, holding time of 80 min and stirring speed of 120 r/min. The results indicate that the removal of F and Cl from fuming furnace production of zinc oxide fumes using microwave roasting process is feasible and reliable.
基金National Natural Science Foundation of China ( No.50872124)Programfor Changjiang Scholars and Innovative Research Teamin University,China(No.IRT0654)
文摘A novel heterogeneous catalyst, viscose fiber- supported cobalt phthalocyanine (Co - TDTAPc - F), was prepared by immobilizing cobalt tetra(2.4 - dichloro- 1,3, 5 -triazine)aminophtbalocyanine (Co- TDTAPc) on viscose fibers covalcntly. The oxidative removal of chlorophenols such as 2 - chlorophenoi, 4 - chlorophenol, 2, 4 - dichlorophenol, and 2, 4, 6 - trichlorophenol was investigated in the catalytic oxidative system of Co - TDTAPc- F/H2O2. Furthermore, more than 98% of these chloropbenols were decomposed in 4 h. Phenol, oxalic acid, maleic acid, and succinic acid, etc., were detected by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrophotometer (GC - MS), and these short-chain organic acids could be further oxidized easily. The results indicated that the catalytic oxidation in the Co- TDTAPc - F/H2O2 system leaded to a deeper oxidation. In addition, a degradation pathway for chlorophenols was proposed on the basis of detection of intermediate compounds.