The mechanism of all present adopted desulfurization technologies is chemical reaction. A new kind of desulfurization medium - TiO 2 particle having large fraction void and specific surface area which is made from Ti...The mechanism of all present adopted desulfurization technologies is chemical reaction. A new kind of desulfurization medium - TiO 2 particle having large fraction void and specific surface area which is made from TiO 2 with superfine size sintered at low temperature and processed with surface activation is tested and investigated. The mechanism of desulfurization is mainly physical adsorption instead of traditional chemical reaction. Four samples of such TiO 2 particles were characterized by advanced instruments and tested for adsorption dynamics at the temperature range of 90?℃ to 240?℃ in a fixed bed. The results show that its adsorption ability for SO 2in flue gas is dependent strongly on three factors: quality of TiO 2particles, adsorption temperature and SO 2 concentration in flue gas. Titanium dioxide has well desulfurization character and pretty good prospect in engineering application. Sintered at temperature range from 440?℃ to 540?℃, it has the best adsorption ability. In practical use the best adsorption temperature is around 120?℃.展开更多
文摘The mechanism of all present adopted desulfurization technologies is chemical reaction. A new kind of desulfurization medium - TiO 2 particle having large fraction void and specific surface area which is made from TiO 2 with superfine size sintered at low temperature and processed with surface activation is tested and investigated. The mechanism of desulfurization is mainly physical adsorption instead of traditional chemical reaction. Four samples of such TiO 2 particles were characterized by advanced instruments and tested for adsorption dynamics at the temperature range of 90?℃ to 240?℃ in a fixed bed. The results show that its adsorption ability for SO 2in flue gas is dependent strongly on three factors: quality of TiO 2particles, adsorption temperature and SO 2 concentration in flue gas. Titanium dioxide has well desulfurization character and pretty good prospect in engineering application. Sintered at temperature range from 440?℃ to 540?℃, it has the best adsorption ability. In practical use the best adsorption temperature is around 120?℃.