With indica ( Oryza sativa L.) hybrid Shanyou 63 as control, the hybrid rice varieties including Peiai 64S/E32, Peiai 64S/9311, X07S/Zihui 100, Guangyou 881 and japonica 9516 were used to study changes of chlorophyll ...With indica ( Oryza sativa L.) hybrid Shanyou 63 as control, the hybrid rice varieties including Peiai 64S/E32, Peiai 64S/9311, X07S/Zihui 100, Guangyou 881 and japonica 9516 were used to study changes of chlorophyll content, photosynthetic response to light intensity and temperature, chlorophyll fluorescence characteristics and membrane lipid peroxidation in their flag leaves at the late stage of development under natural conditions in Nanjing. The results were as follows:. primary photochemical efficiency of PS II ( F-v / F-m), quantum yield of linear electron transport of PS II (phi(PSII)), electron transfer rate (ETR) in these rice varieties decreased with their decrease of chlorophyll content during this period. This kind of impediment to energy conversion induced the transfer of excessive energy to the reducing side of PS I, hence the accumulation of O-2(radical anion) and peroxidation of membrane lipid, and resulting in the accumulation of malondialdehyde (MDA), that is the destroys of photosynthetic pigments and membranes and the consequent, premature senescence. This phenomenon is variable conspicuously in different rice varieties. Under natural condition in Nanjing, F-v/F-m, phi(PSII), ETR and quenching coefficient ( qP) in japonica 9516 tolerant to photooxidation decreased less and the conversion capacity of light energy was stable, premature senescence was unlikely, and consequently the seed-setting rate was higher. While F-v/F-m, phi(PSII), ETR and photochemical qP in Shanyou 63 sensitive to photooxidation decreased more and therefore premature senescence was easy to happen, thus the seed-setting rate and yield were all reduced. The tolerance to photooxidation and premature senescence in other hybrids derived from typical two line or three line crossing laid in the middle. From the rice breeding for super-high-yield, on the basis of the good plant-type of current rice, considering both hybrid vigor and the prevention premature senescence, it would be a notable strategy to use japonica maternal line or maternal. lines with some japonica genotype as the sterile lines in rice breeding.展开更多
Polycrystalline titanium oxide films are fabricated on silicon by thermally oxidizing titanium.The current- voltage and capacitance- voltage characteristics of the Ag/Ti Ox/Si/Ag capacitors are m easured.The thicknes...Polycrystalline titanium oxide films are fabricated on silicon by thermally oxidizing titanium.The current- voltage and capacitance- voltage characteristics of the Ag/Ti Ox/Si/Ag capacitors are m easured.The thickness of the titanium oxide films arranges from15 0 nm to2 5 0 nm,and their dielectric constants are within40~ 87.As the oxida- tion tim e is shortened,the fixed charges of the titanium oxide films become less and the leakage current characteris- tics becom e better.展开更多
Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorpho...Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·n H2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2h, RuO2·n H2O electrode surface gains mass of2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly20% with voltage scan rate increasing from 5 to 250 m V/s.展开更多
Titanium and its alloys are widely used in the aerospace, marine, and biomedical industry due to their unique bulk properties such as high strength-to-weight ratio and melting temperature, good corrosion resistance, a...Titanium and its alloys are widely used in the aerospace, marine, and biomedical industry due to their unique bulk properties such as high strength-to-weight ratio and melting temperature, good corrosion resistance, and favorable biocom- patibility. However, in some applications, com- ponents made of titanium or titanium alloys exhibit poor wear resistance under stationary or dynamic loading as well as contact corrosion manifested by the relatively negative standard electrode potential (-1.63 V ) . In order to improve the surface properties of titanium and its alloys, several techniques such as PVD ( physical vapor deposition ) /CVD (chemical vapor deposition ) coatings,展开更多
FeCrAI (Ce) stainless steel was functionalized by a conversion treatment in order to allow alumina by diffusion coatings with strong interfacial bonding. The very porous conversion coating produced in a pack alumini...FeCrAI (Ce) stainless steel was functionalized by a conversion treatment in order to allow alumina by diffusion coatings with strong interfacial bonding. The very porous conversion coating produced in a pack aluminization technique had excellent adhesion and was conductive enough to permit conditions favorable for the precipitation of alumina oxyhydroxide during aluminum diffusion coatings. In this work, the bed was prepared as a mixture of A1, NH4C1 and A1203. In the high-activity bed were heat-treated at 1,173 K in an atmosphere made up of team with subsequent air-cooling. The effect of the bed content on the coating was examined. With the high-activity, the desired Fe2Al5 was formed as the outermost coating layer. The coating presented chemical composition gradients suitable for strong adhesion. The improvement of the thermal oxidation behaviour was studied at 1,373 K. Two different aqueous environments, which are (1) NaC1 and (2) H2SO4, are employed for using the technique of potentiodynamic polarization curve. The obtained experimental electrochemical parameters (Ecorr, Jcorr etc,) were used to compare the corrosion resistance of the tested steel state complemented by MEB (electronic scanning microscopy) in combination with dispersive analysis X in energy (EDS) or X ray diffraction indicated that the elements concentration maximum was located in the vicinity of the interface especially in the FeCrAI (Ce) coated by spherical A1203 powder. These results an discussed in terms of an addition effect on the development of the microstructure of oxide films.展开更多
文摘With indica ( Oryza sativa L.) hybrid Shanyou 63 as control, the hybrid rice varieties including Peiai 64S/E32, Peiai 64S/9311, X07S/Zihui 100, Guangyou 881 and japonica 9516 were used to study changes of chlorophyll content, photosynthetic response to light intensity and temperature, chlorophyll fluorescence characteristics and membrane lipid peroxidation in their flag leaves at the late stage of development under natural conditions in Nanjing. The results were as follows:. primary photochemical efficiency of PS II ( F-v / F-m), quantum yield of linear electron transport of PS II (phi(PSII)), electron transfer rate (ETR) in these rice varieties decreased with their decrease of chlorophyll content during this period. This kind of impediment to energy conversion induced the transfer of excessive energy to the reducing side of PS I, hence the accumulation of O-2(radical anion) and peroxidation of membrane lipid, and resulting in the accumulation of malondialdehyde (MDA), that is the destroys of photosynthetic pigments and membranes and the consequent, premature senescence. This phenomenon is variable conspicuously in different rice varieties. Under natural condition in Nanjing, F-v/F-m, phi(PSII), ETR and quenching coefficient ( qP) in japonica 9516 tolerant to photooxidation decreased less and the conversion capacity of light energy was stable, premature senescence was unlikely, and consequently the seed-setting rate was higher. While F-v/F-m, phi(PSII), ETR and photochemical qP in Shanyou 63 sensitive to photooxidation decreased more and therefore premature senescence was easy to happen, thus the seed-setting rate and yield were all reduced. The tolerance to photooxidation and premature senescence in other hybrids derived from typical two line or three line crossing laid in the middle. From the rice breeding for super-high-yield, on the basis of the good plant-type of current rice, considering both hybrid vigor and the prevention premature senescence, it would be a notable strategy to use japonica maternal line or maternal. lines with some japonica genotype as the sterile lines in rice breeding.
文摘Polycrystalline titanium oxide films are fabricated on silicon by thermally oxidizing titanium.The current- voltage and capacitance- voltage characteristics of the Ag/Ti Ox/Si/Ag capacitors are m easured.The thickness of the titanium oxide films arranges from15 0 nm to2 5 0 nm,and their dielectric constants are within40~ 87.As the oxida- tion tim e is shortened,the fixed charges of the titanium oxide films become less and the leakage current characteris- tics becom e better.
基金Project(S2013040015492)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(2007AA03Z240)supported by Hi-tech Research and Development Program of China
文摘Ru O2·n H2O film was deposited on tantalum foils by electrodeposition and heat treatment using Ru Cl3·3H2O as precursor.Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·n H2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2h, RuO2·n H2O electrode surface gains mass of2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly20% with voltage scan rate increasing from 5 to 250 m V/s.
文摘Titanium and its alloys are widely used in the aerospace, marine, and biomedical industry due to their unique bulk properties such as high strength-to-weight ratio and melting temperature, good corrosion resistance, and favorable biocom- patibility. However, in some applications, com- ponents made of titanium or titanium alloys exhibit poor wear resistance under stationary or dynamic loading as well as contact corrosion manifested by the relatively negative standard electrode potential (-1.63 V ) . In order to improve the surface properties of titanium and its alloys, several techniques such as PVD ( physical vapor deposition ) /CVD (chemical vapor deposition ) coatings,
文摘FeCrAI (Ce) stainless steel was functionalized by a conversion treatment in order to allow alumina by diffusion coatings with strong interfacial bonding. The very porous conversion coating produced in a pack aluminization technique had excellent adhesion and was conductive enough to permit conditions favorable for the precipitation of alumina oxyhydroxide during aluminum diffusion coatings. In this work, the bed was prepared as a mixture of A1, NH4C1 and A1203. In the high-activity bed were heat-treated at 1,173 K in an atmosphere made up of team with subsequent air-cooling. The effect of the bed content on the coating was examined. With the high-activity, the desired Fe2Al5 was formed as the outermost coating layer. The coating presented chemical composition gradients suitable for strong adhesion. The improvement of the thermal oxidation behaviour was studied at 1,373 K. Two different aqueous environments, which are (1) NaC1 and (2) H2SO4, are employed for using the technique of potentiodynamic polarization curve. The obtained experimental electrochemical parameters (Ecorr, Jcorr etc,) were used to compare the corrosion resistance of the tested steel state complemented by MEB (electronic scanning microscopy) in combination with dispersive analysis X in energy (EDS) or X ray diffraction indicated that the elements concentration maximum was located in the vicinity of the interface especially in the FeCrAI (Ce) coated by spherical A1203 powder. These results an discussed in terms of an addition effect on the development of the microstructure of oxide films.