This article mainly summarizes various aspects of hydrogen peroxide(H2O2)production through the anthraquinone route,including hydrogenation catalysts,working solution,regeneration technique,hydrogenation reactors,and ...This article mainly summarizes various aspects of hydrogen peroxide(H2O2)production through the anthraquinone route,including hydrogenation catalysts,working solution,regeneration technique,hydrogenation reactors,and environmental protection.The advances and breakthrough of SINOPEC in the production of H2O2 through the anthraquinone route is presented in this review,highlighting recent innovative technology on these aspects developed independently.The technical prospect and scientific challenges associated with the direct synthesis method from hydrogen and oxygen are also briefly discussed.展开更多
The purpose of this paper was to investigate the possibility of treating C. I. Reactive Blue 19 wastewater by electrochemical oxidation via electrogenerated active chlorine, using metallic oxide coatings (dimensional...The purpose of this paper was to investigate the possibility of treating C. I. Reactive Blue 19 wastewater by electrochemical oxidation via electrogenerated active chlorine, using metallic oxide coatings (dimensional stable anode, DSA) as anode. The electrolysis for the simulated wastewater was conducted at a constant current. Absorbances at 592 nm and 255 nm were measured to follow the decolorization of the dye and the degradatin of its aromatic ring. After 4 h of electrolysis under the experimental conditions: current density of 15 A·m^-2, 0.2 mol·L^-1 NaCl, 0.1 mol·L^-1 Na2SO4, 0.1 mmol·L^-1 dye, initial pH=6.4 and T=30℃, 100% decolorization of the dye and about 45% degradation of its aromatic ring were achieved, while no obvious change of total organic carbon was observed. The experimental results suggest that the decolorization of the dye and degradation of its aromatic ring were directly affected by current density, temperature, concentrations of the dye and sodium chloride, while slightly affected by initial pH and sodium sulfate concentration; the decolorization of the dye and degradation of its aromatic ring followed pseudo-first-order kinetics; and indirect electrooxidation, using electrogenerated active chlorine, predominated in the electrochemical oxidation.展开更多
The extractive reaction process of oxygen-working solution-water three-phase system for the production of hydrogen peroxide by the anthraquinone method was investigated in a sieve plate column of 50 mm in internal dia...The extractive reaction process of oxygen-working solution-water three-phase system for the production of hydrogen peroxide by the anthraquinone method was investigated in a sieve plate column of 50 mm in internal diameter. The oxidation reaction of anthrahydroquinone in the working solution with oxygen and the extraction of hydrogen peroxide from the working solution into aqueous phase occurred simultaneously in the countercurrent mode. The agitating effect caused by gaseous phase made the droplets of the dispersed phase become smaller, thus, increasing the liquid-liquid interfacial contact areas and resulting in the improvement of the mass transfer velocity. Results showed that the gas-agitation had a beneficial effect on the extraction of hydrogen peroxide from the working solution into the aqueous phase; the concentration of hydrogen peroxide in the raffinate decreased with the increase of the gaseous superficial velocities; and the concentration of H2O2 in the raffinate increased with the increase of the dispersed phase superficial velocity at the same superficial velocity of the gaseous phase. In the G-L-L extractive reaction process, with the increase of the gaseous superficial velocities, both the conversion of the anthrahydroquinone oxidation and the extraction efficiency of hydrogen peroxide first increased significantly, then increased gradually.展开更多
Pd/oxide/cordierite monolithic catalysts(oxide = Al_2O_3, SiO_2 and SiO_2\\Al_2O_3) were prepared by the impregnation method. The results of ICP, XRD, SEM–EDX, XPS and N_2 adsorption–desorption measurements revealed...Pd/oxide/cordierite monolithic catalysts(oxide = Al_2O_3, SiO_2 and SiO_2\\Al_2O_3) were prepared by the impregnation method. The results of ICP, XRD, SEM–EDX, XPS and N_2 adsorption–desorption measurements revealed that the Pd penetration depth increased with increasing the thickness of oxide layer, and the catalysts with Al_2O_3 layers had the larger pore size than those with SiO_2 and SiO_2\\Al_2O_3 layers. Catalytic hydrogenation of 2-ethylanthraquinone(eA Q), a key step of the H_2O_2 production by the anthraquinone process, over the various monolithic catalysts(60 °C, atmosphere pressure) showed that the monolithic catalyst with the moderate thickness of Al_2O_3 layer(about 6 μm) exhibited the highest conversion of e AQ(99.1%) and hydrogenation efficiency(10.0 g·L^(-1)). This could be ascribed to the suitable Pd penetration depth and the larger pore size, which provides a balance between the distribution of Pd and accessibility of active sites by the reactants.展开更多
The transformation profiles of polycyclic aromatic hydrocarbons (PAHs) by pure laccases from Trametes versicolor and Pycnoporus sanguineus, and the optimal reaction conditions (acetonitrile concentration, pH, tempe...The transformation profiles of polycyclic aromatic hydrocarbons (PAHs) by pure laccases from Trametes versicolor and Pycnoporus sanguineus, and the optimal reaction conditions (acetonitrile concentration, pH, temperature and incubation time) were determined. Anthracene was the most transformable PAH by both laccases, followed by benzo[a]pyrene, and benzo[a]anthracene. Laccase-mediator system (LMS) could not only improve the PAH oxidation but also extend the substrate types compared to laccase alone. 5e/0 or 10~ (v/v) of acetonitrile concentration, pH 4, temperature of 40 ~C, and incubation time of 24 h were most favorable for anthracene oxidation by laccase from T. versicolor or P. sanguineus. The gas chromatography-mass spectrometry analysis indicated that 9,10- anthraquinone was the main product of anthracene transformed by laccase from T. versicolor. Microtox test results showed that both anthracene and its laccase-transformation products were not acute toxic compounds, suggesting that laccase-treatment of anthracene would not increase the acute toxicity of contaminated site.展开更多
Oxygen reduction reactions(ORRs)with one-or two-electron-transfer pathways are the essential process for aprotic metal-oxygen batteries,in which the stability of superoxide intermediates/products(O_(2)^(-),LiO_(2),NaO...Oxygen reduction reactions(ORRs)with one-or two-electron-transfer pathways are the essential process for aprotic metal-oxygen batteries,in which the stability of superoxide intermediates/products(O_(2)^(-),LiO_(2),NaO_(2),etc.)mainly dominates the ORR activity/stability and battery performance.However,little success in regulating the stability of the superoxides has been achieved due to their highly reactive characteristics.Herein,we identified and modulated the stability of superoxides by introducing anthraquinone derivatives as cocatalysts which functioned as superoxide trapper adsorbing the superoxides generated via surface-mediated ORR and then transferring them from the solid catalyst surface into electrolyte.Among the studied trappers,1,4-difluoroanthraquinone(DFAQ)with electron-withdrawing groups showed the highest adsorption towards superoxides and could efficiently stabilize LiO_(2)in electrolyte,which greatly promoted the surface-mediated ORR rate and stability.This highlighted the magnitude of adsorption between the trapper and LiO_(2)on the ORR activity/stability.Using an aprotic Li-O_(2)battery as a model metal-O_(2)battery,the overall performance of the cell with DFAQ was substantially improved in terms of cell capacity,rate capability and cyclic stability.These results represent a significant advance in the understanding of ORR mechanisms and promoting the performance of metal-O_(2)batteries.展开更多
文摘This article mainly summarizes various aspects of hydrogen peroxide(H2O2)production through the anthraquinone route,including hydrogenation catalysts,working solution,regeneration technique,hydrogenation reactors,and environmental protection.The advances and breakthrough of SINOPEC in the production of H2O2 through the anthraquinone route is presented in this review,highlighting recent innovative technology on these aspects developed independently.The technical prospect and scientific challenges associated with the direct synthesis method from hydrogen and oxygen are also briefly discussed.
文摘The purpose of this paper was to investigate the possibility of treating C. I. Reactive Blue 19 wastewater by electrochemical oxidation via electrogenerated active chlorine, using metallic oxide coatings (dimensional stable anode, DSA) as anode. The electrolysis for the simulated wastewater was conducted at a constant current. Absorbances at 592 nm and 255 nm were measured to follow the decolorization of the dye and the degradatin of its aromatic ring. After 4 h of electrolysis under the experimental conditions: current density of 15 A·m^-2, 0.2 mol·L^-1 NaCl, 0.1 mol·L^-1 Na2SO4, 0.1 mmol·L^-1 dye, initial pH=6.4 and T=30℃, 100% decolorization of the dye and about 45% degradation of its aromatic ring were achieved, while no obvious change of total organic carbon was observed. The experimental results suggest that the decolorization of the dye and degradation of its aromatic ring were directly affected by current density, temperature, concentrations of the dye and sodium chloride, while slightly affected by initial pH and sodium sulfate concentration; the decolorization of the dye and degradation of its aromatic ring followed pseudo-first-order kinetics; and indirect electrooxidation, using electrogenerated active chlorine, predominated in the electrochemical oxidation.
基金Supported by State Key Fundamental Research Project of China(No.G20004085) and National Natural Science Foundationof China(No.C20106011).
文摘The extractive reaction process of oxygen-working solution-water three-phase system for the production of hydrogen peroxide by the anthraquinone method was investigated in a sieve plate column of 50 mm in internal diameter. The oxidation reaction of anthrahydroquinone in the working solution with oxygen and the extraction of hydrogen peroxide from the working solution into aqueous phase occurred simultaneously in the countercurrent mode. The agitating effect caused by gaseous phase made the droplets of the dispersed phase become smaller, thus, increasing the liquid-liquid interfacial contact areas and resulting in the improvement of the mass transfer velocity. Results showed that the gas-agitation had a beneficial effect on the extraction of hydrogen peroxide from the working solution into the aqueous phase; the concentration of hydrogen peroxide in the raffinate decreased with the increase of the gaseous superficial velocities; and the concentration of H2O2 in the raffinate increased with the increase of the dispersed phase superficial velocity at the same superficial velocity of the gaseous phase. In the G-L-L extractive reaction process, with the increase of the gaseous superficial velocities, both the conversion of the anthrahydroquinone oxidation and the extraction efficiency of hydrogen peroxide first increased significantly, then increased gradually.
基金Supported by the Sinopec Corp.Scientific Research Projects(414076)
文摘Pd/oxide/cordierite monolithic catalysts(oxide = Al_2O_3, SiO_2 and SiO_2\\Al_2O_3) were prepared by the impregnation method. The results of ICP, XRD, SEM–EDX, XPS and N_2 adsorption–desorption measurements revealed that the Pd penetration depth increased with increasing the thickness of oxide layer, and the catalysts with Al_2O_3 layers had the larger pore size than those with SiO_2 and SiO_2\\Al_2O_3 layers. Catalytic hydrogenation of 2-ethylanthraquinone(eA Q), a key step of the H_2O_2 production by the anthraquinone process, over the various monolithic catalysts(60 °C, atmosphere pressure) showed that the monolithic catalyst with the moderate thickness of Al_2O_3 layer(about 6 μm) exhibited the highest conversion of e AQ(99.1%) and hydrogenation efficiency(10.0 g·L^(-1)). This could be ascribed to the suitable Pd penetration depth and the larger pore size, which provides a balance between the distribution of Pd and accessibility of active sites by the reactants.
基金Supported by the National High-Tech R&D Program of China(No.2007AA061101)the Key Laboratory of Soil Environment and Pollution Remediation,Institute of Soil Science,Chinese Academy of Sciencesthe Zhejiang Provincial Natural Science Foundation of China(No.Y5110147)
文摘The transformation profiles of polycyclic aromatic hydrocarbons (PAHs) by pure laccases from Trametes versicolor and Pycnoporus sanguineus, and the optimal reaction conditions (acetonitrile concentration, pH, temperature and incubation time) were determined. Anthracene was the most transformable PAH by both laccases, followed by benzo[a]pyrene, and benzo[a]anthracene. Laccase-mediator system (LMS) could not only improve the PAH oxidation but also extend the substrate types compared to laccase alone. 5e/0 or 10~ (v/v) of acetonitrile concentration, pH 4, temperature of 40 ~C, and incubation time of 24 h were most favorable for anthracene oxidation by laccase from T. versicolor or P. sanguineus. The gas chromatography-mass spectrometry analysis indicated that 9,10- anthraquinone was the main product of anthracene transformed by laccase from T. versicolor. Microtox test results showed that both anthracene and its laccase-transformation products were not acute toxic compounds, suggesting that laccase-treatment of anthracene would not increase the acute toxicity of contaminated site.
基金the National Natural Science Foundation of China(21773055,U1604122,51702086,21203055and 21805070)the Program for Science&Technology Innovation Talents in Universities of Henan Province(18HASTIT004)China Postdoctoral Science Foundation(2020M672201)。
文摘Oxygen reduction reactions(ORRs)with one-or two-electron-transfer pathways are the essential process for aprotic metal-oxygen batteries,in which the stability of superoxide intermediates/products(O_(2)^(-),LiO_(2),NaO_(2),etc.)mainly dominates the ORR activity/stability and battery performance.However,little success in regulating the stability of the superoxides has been achieved due to their highly reactive characteristics.Herein,we identified and modulated the stability of superoxides by introducing anthraquinone derivatives as cocatalysts which functioned as superoxide trapper adsorbing the superoxides generated via surface-mediated ORR and then transferring them from the solid catalyst surface into electrolyte.Among the studied trappers,1,4-difluoroanthraquinone(DFAQ)with electron-withdrawing groups showed the highest adsorption towards superoxides and could efficiently stabilize LiO_(2)in electrolyte,which greatly promoted the surface-mediated ORR rate and stability.This highlighted the magnitude of adsorption between the trapper and LiO_(2)on the ORR activity/stability.Using an aprotic Li-O_(2)battery as a model metal-O_(2)battery,the overall performance of the cell with DFAQ was substantially improved in terms of cell capacity,rate capability and cyclic stability.These results represent a significant advance in the understanding of ORR mechanisms and promoting the performance of metal-O_(2)batteries.