H+ doped polyaniline nanofibre(PH) was synthesized by interfacial polymerization and polyanilines doped with Li salt(PLI and PHLI) were prepared by immersing emeraldine base(EB) and H+ doped polyaniline in 1 mol/L LiP...H+ doped polyaniline nanofibre(PH) was synthesized by interfacial polymerization and polyanilines doped with Li salt(PLI and PHLI) were prepared by immersing emeraldine base(EB) and H+ doped polyaniline in 1 mol/L LiPF6/(EC-EMC-DMC),respectively.PH,PLI and PHLI were all characterized by scanning electron microscopy(SEM) and Fourier transform infrared(FT-IR) spectrometry.With 1 mol/L LiPF6/(EC-EMC-DMC) as electrolyte,PH,PHLI and PLI were used as the active materials of symmetric non-aqueous redox supercapacitors.PLI shows the highest initial specific capacitance of 120 F/g(47 F/g for PH and 66 F/g for PHLI) among three samples.After 500 cycles,the specific capacitance of PLI remains 75 F/g,indicating the good cycleability.展开更多
The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 2...The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses.展开更多
Stable and high‐efficiency bifunctional catalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desired for the practical application of Li‐O_(2)batteries with excellent rate performanc...Stable and high‐efficiency bifunctional catalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desired for the practical application of Li‐O_(2)batteries with excellent rate performance and cycle stability.Herein,a novel hybrid bifunctional catalyst with carbon nanofibers inlaid with hollow Co_(3)O_(4)nanoparticles and separate active sites for ORR and OER were prepared and applied in Li‐O_(2)batteries.Benefiting from the synergistic effect of unique porous structural features and high electrocatalytic activity of hollow Co3O4 intimately bound to N‐doped carbon nanofibers,the assembled Li‐O_(2)batteries with novel catalyst exhibited high specific capacity,excellent rate capability,and cycle stability up to 150 cycles under a capacity limitation of 500 mAh g^(–1)at a current density of 100 mA g^(–1).The facile synthesis and preliminary results in this work show the as‐prepared catalyst as a promising bifunctional electrocatalyst for applications in metal‐air batteries,fuel cells,and electrocatalysis.展开更多
Development of cheap,abundant and noblemetal-free materials as high efficient oxygen reduction electrocatalysts is crucial for future energy storage system. Here,one-dimensional(1D) MnO N-doped carbon nanofibers(Mn...Development of cheap,abundant and noblemetal-free materials as high efficient oxygen reduction electrocatalysts is crucial for future energy storage system. Here,one-dimensional(1D) MnO N-doped carbon nanofibers(MnO-NCNFs) were successfully developed by electrospinning combined with high temperature pyrolysis. The MnO-NCNFs exhibit promising electrochemical performance,methanol tolerance,and durability in alkaline medium. The outstanding electrocatalytic activity is mainly attributed to several issues.First of all,the uniform 1D fiber structure and the conductive network could facilitate the electron transport. Besides,the introduction of Mn into the precursor can catalyze the transformation of amorphous carbon to graphite carbon,while the improved graphitization means better conductivity,beneficial for the enhancement of catalytic activity for oxygen reduction reaction(ORR). Furthermore,the porous structure and high surface area can effectively decrease the mass transport resistance and increase the exposed ORR active sites,thus improve utilization efficiency and raise the quantity of exposed ORR active sites. The synergistic effect of MnO and NCNFs matrix,which enhances charge transfer,adsorbent transport,and delivers efficiency in the electrolyte solution,ensures the high ORR performance of MnO-NCNFs.展开更多
The decentralized production of H_(2)O_(2) via a twoelectron oxygen reduction reaction(2e^(-)ORR)has emerged as a promising alternative to the energy-intensive anthraquinone(AQ)process.However,its practical applicatio...The decentralized production of H_(2)O_(2) via a twoelectron oxygen reduction reaction(2e^(-)ORR)has emerged as a promising alternative to the energy-intensive anthraquinone(AQ)process.However,its practical application requires 2eORR electrocatalysts with high activity and selectivity.Herein,we report the synthesis of metallic Ni nanoparticles anchored on bacterial cellulose-derived carbon fibers(Ni-NPs/BCCF)via a facile impregnation-pyrolysis method as efficient electrocatalysts for 2 e-ORR to H_(2)O_(2).By tuning the amount of Ni precursor,the best electrocatalytic performance toward 2 eORR was achieved for Ni-NPs/BCCF-20.7,affording a high H_(2)O_(2) selectivity of ~90% and an onset potential of 0.75 V vs.reversible hydrogen electrode(RHE)in an alkaline electrolyte.Ni-NPs/BCCF-20.7 achieved the largest H_(2)O_(2) yield rate of 162.7±13.7 mmol gcat^(-1)h^(-1) and the highest Faradaic efficiency of 93.9%±4.2% at 0.2 and 0.5 V vs.RHE from the bulk ORR system,respectively.Theoretical calculations revealed the more favorable"end-on"adsorption configuration of molecular oxygen on the exposed Ni(111)plane,which can effectively suppress the O-O bond dissociation,resulting in high selectivity for H_(2)O_(2) generation.展开更多
基金Project(2008AA03Z207) supported by the National Hi-tech Research and Development Program of China
文摘H+ doped polyaniline nanofibre(PH) was synthesized by interfacial polymerization and polyanilines doped with Li salt(PLI and PHLI) were prepared by immersing emeraldine base(EB) and H+ doped polyaniline in 1 mol/L LiPF6/(EC-EMC-DMC),respectively.PH,PLI and PHLI were all characterized by scanning electron microscopy(SEM) and Fourier transform infrared(FT-IR) spectrometry.With 1 mol/L LiPF6/(EC-EMC-DMC) as electrolyte,PH,PHLI and PLI were used as the active materials of symmetric non-aqueous redox supercapacitors.PLI shows the highest initial specific capacitance of 120 F/g(47 F/g for PH and 66 F/g for PHLI) among three samples.After 500 cycles,the specific capacitance of PLI remains 75 F/g,indicating the good cycleability.
基金Project(2010FJ1011)supported by the Major Project of Science and Technology of Hunan Province,China
文摘The kinetics of reductive leaching of manganese from a low-grade manganese oxide ore were studied using cellulose as reductant in dilute sulfuric acid medium.It was found that when the stirring speed was higher than 200 r/min,the effect of gas film diffusion on manganese extraction efficiency could be neglected,and the kinetic behavior was investigated under the condition of elimination of external diffusion influence on the leaching process.Effects of leaching temperature,mass ratio of cellulose and ore,and the sulfuric acid concentration on manganese extraction efficiency were discussed.The kinetic data were analyzed based on the shrinking core model,which indicated that the leaching process was dominated by both ash layer diffusion and chemical reaction at the initial stage,with the progress of leaching reaction,the rate-controlling step switched to the ash layer diffusion.It was also concluded that the sulfuric acid concentration had the most significant influence on the leaching rate,the reaction orders with respect to the sulfuric acid concentration were 2.102 in the first 60 min,and 3.642 in the later 90 min,while the reaction orders for mass ratio of cellulose and ore were 0.660 and 0.724,respectively.An Arrhenius relationship was used to relate the temperature to the rate of leaching,from which apparent activation energies were calculated to be 46.487 kJ/mol and 62.290 kJ/mol at the two stages,respectively.Finally,the overall leaching rate equations for the manganese dissolution reaction with cellulose in sulphuric acid solution were developed.The morphological changes and mineralogical forms of the ore before and after the chemical treatment were discussed with the support of SEM and XRD analyses.
文摘Stable and high‐efficiency bifunctional catalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desired for the practical application of Li‐O_(2)batteries with excellent rate performance and cycle stability.Herein,a novel hybrid bifunctional catalyst with carbon nanofibers inlaid with hollow Co_(3)O_(4)nanoparticles and separate active sites for ORR and OER were prepared and applied in Li‐O_(2)batteries.Benefiting from the synergistic effect of unique porous structural features and high electrocatalytic activity of hollow Co3O4 intimately bound to N‐doped carbon nanofibers,the assembled Li‐O_(2)batteries with novel catalyst exhibited high specific capacity,excellent rate capability,and cycle stability up to 150 cycles under a capacity limitation of 500 mAh g^(–1)at a current density of 100 mA g^(–1).The facile synthesis and preliminary results in this work show the as‐prepared catalyst as a promising bifunctional electrocatalyst for applications in metal‐air batteries,fuel cells,and electrocatalysis.
基金supported by the National Natural Science Foundation of China (21671096 and 21603094)the Natural Science Foundation of Guangdong Province (2016A030310376)+2 种基金Shenzhen Key Laboratory Project (ZDSYS201603311013489)the Natural Science Foundation of Shenzhen (JCYJ20150630145302231 and JCYJ20150331101823677)the Undergraduate Training Program for Innovation and Entrepreneurship of Guangdong (2016S10)
文摘Development of cheap,abundant and noblemetal-free materials as high efficient oxygen reduction electrocatalysts is crucial for future energy storage system. Here,one-dimensional(1D) MnO N-doped carbon nanofibers(MnO-NCNFs) were successfully developed by electrospinning combined with high temperature pyrolysis. The MnO-NCNFs exhibit promising electrochemical performance,methanol tolerance,and durability in alkaline medium. The outstanding electrocatalytic activity is mainly attributed to several issues.First of all,the uniform 1D fiber structure and the conductive network could facilitate the electron transport. Besides,the introduction of Mn into the precursor can catalyze the transformation of amorphous carbon to graphite carbon,while the improved graphitization means better conductivity,beneficial for the enhancement of catalytic activity for oxygen reduction reaction(ORR). Furthermore,the porous structure and high surface area can effectively decrease the mass transport resistance and increase the exposed ORR active sites,thus improve utilization efficiency and raise the quantity of exposed ORR active sites. The synergistic effect of MnO and NCNFs matrix,which enhances charge transfer,adsorbent transport,and delivers efficiency in the electrolyte solution,ensures the high ORR performance of MnO-NCNFs.
基金financially supported by the National Natural Science Foundation of China(51872292)China Postdoctoral Science Foundation(E04BFGCV)the CASHIPS Director’s Fund(YZJJ2021QN18)。
文摘The decentralized production of H_(2)O_(2) via a twoelectron oxygen reduction reaction(2e^(-)ORR)has emerged as a promising alternative to the energy-intensive anthraquinone(AQ)process.However,its practical application requires 2eORR electrocatalysts with high activity and selectivity.Herein,we report the synthesis of metallic Ni nanoparticles anchored on bacterial cellulose-derived carbon fibers(Ni-NPs/BCCF)via a facile impregnation-pyrolysis method as efficient electrocatalysts for 2 e-ORR to H_(2)O_(2).By tuning the amount of Ni precursor,the best electrocatalytic performance toward 2 eORR was achieved for Ni-NPs/BCCF-20.7,affording a high H_(2)O_(2) selectivity of ~90% and an onset potential of 0.75 V vs.reversible hydrogen electrode(RHE)in an alkaline electrolyte.Ni-NPs/BCCF-20.7 achieved the largest H_(2)O_(2) yield rate of 162.7±13.7 mmol gcat^(-1)h^(-1) and the highest Faradaic efficiency of 93.9%±4.2% at 0.2 and 0.5 V vs.RHE from the bulk ORR system,respectively.Theoretical calculations revealed the more favorable"end-on"adsorption configuration of molecular oxygen on the exposed Ni(111)plane,which can effectively suppress the O-O bond dissociation,resulting in high selectivity for H_(2)O_(2) generation.