期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
微波协同氧化钙处理对植物纤维失水率与可及度的影响研究
1
作者 陈潇川 刘敏毅 +2 位作者 肖荔人 陈荣国 陈庆华 《材料工程》 EI CAS CSCD 北大核心 2012年第5期81-86,共6页
采用氧化钙高速捏合处理,再辅以微波辐射协同处理桐壳纤维和水葫芦纤维,以期使它们适用于制备木塑复合材料。通过失水率、保水值和红外光谱测试,研究了处理条件对这两种植物纤维的失水率和可及度的影响,重点讨论了保水值、分子间氢键百... 采用氧化钙高速捏合处理,再辅以微波辐射协同处理桐壳纤维和水葫芦纤维,以期使它们适用于制备木塑复合材料。通过失水率、保水值和红外光谱测试,研究了处理条件对这两种植物纤维的失水率和可及度的影响,重点讨论了保水值、分子间氢键百分含量和红外结晶指数等可及度参数的变化规律,并简要探讨了植物纤维的脱水机理。结果表明:微波协同氧化钙处理可延缓植物纤维的失水性和降低植物纤维的失水率,归因于经处理后植物纤维的可及度被提高。 展开更多
关键词 可及度 含水率 桐壳纤维 水葫芦纤维 氧化钙处理 微波处理
下载PDF
氢氧化钙预处理对3种秸秆酶解糖化效率的影响 被引量:6
2
作者 宋丽丽 谢建松 +1 位作者 张宁亮 陆美霞 《轻工学报》 CAS 2017年第4期21-29,共9页
选取玉米秸秆、稻草秸秆和小麦秸秆为原料,研究不同氢氧化钙预处理条件对3种秸秆酶解糖化效率的影响.结果表明,小麦秸秆和稻草秸杆的最高还原糖转化率分别为60.38%和46.77%(90℃条件下预处理2 h),玉米秸秆达到最高还原糖转化率(56.82%)... 选取玉米秸秆、稻草秸秆和小麦秸秆为原料,研究不同氢氧化钙预处理条件对3种秸秆酶解糖化效率的影响.结果表明,小麦秸秆和稻草秸杆的最高还原糖转化率分别为60.38%和46.77%(90℃条件下预处理2 h),玉米秸秆达到最高还原糖转化率(56.82%)则需进一步提高预处理温度(121℃条件下预处理1 h),3种秸秆中小麦秸秆较适合使用氢氧化钙预处理方式.对预处理秸秆木质纤维素各成分与红外微观结构分析表明,氢氧化钙预处理能显著降解小麦秸秆中的木质素,木质素选择性降解促进了木质纤维素大分子空间结构屏障的破坏,保留了更多纤维素以供后期酶解糖化利用,进而提升了秸秆酶解糖化效率. 展开更多
关键词 氧化钙处理 秸秆 酶解糖化 木质纤维素 还原糖转化率
下载PDF
两步碱法预处理对玉米秸秆组分及结构的影响 被引量:12
3
作者 朱圆圆 顾夕梅 +3 位作者 朱均均 徐勇 勇强 余世袁 《中国科技论文》 CAS 北大核心 2015年第12期1376-1381,共6页
针对乙酸对乙醇发酵的影响及其在预处理过程中的产生机制,采用氢氧化钠-氢氧化钙2步预处理的方法:第1步氢氧化钠预处理实现乙酰基的去除,从源头上将乙酸与"糖"分开;脱乙酰基后的玉米秸秆进一步采用氢氧化钙预处理,提高纤维素... 针对乙酸对乙醇发酵的影响及其在预处理过程中的产生机制,采用氢氧化钠-氢氧化钙2步预处理的方法:第1步氢氧化钠预处理实现乙酰基的去除,从源头上将乙酸与"糖"分开;脱乙酰基后的玉米秸秆进一步采用氢氧化钙预处理,提高纤维素酶水解得率。采用红外光谱(FT-IR)、X射线衍射仪(XRD)和扫描电镜(SEM)对玉米秸秆纤维结构特性进行分析。研究结果表明,玉米秸秆经第1步氢氧化钠可实现乙酰基去除率和木聚糖残留率分别为95.2%和87.8%,纤维素基本不被降解。脱乙酰基玉米秸秆第2步氢氧化钙预处理正交试验优化条件为氢氧化钙用量0.100g/g玉米秸秆、温度90℃、时间36h,纤维素酶水解36h后的酶水解得率为85.1%,所得固体渣纤维素和半纤维素的回收率分别为92.1%和65.5%,木质素去除率为63.0%。2步碱法预处理后的玉米秸秆纤维表面出现大量的裂纹和裂片,纤维束间发生分离,纤维素的结晶指数由55.1%上升到60.6%,1245cm-1处的C-O基团伸展振动峰形明显减弱是由于乙酰基的去除,结合酶水解得率的提高也说明预处理达到提高纤维素酶对纤维素的可及度。 展开更多
关键词 氧化钠-氢氧化钙处理 玉米秸秆 纤维素酶水解 结构分析
下载PDF
HCl Dry Removal with Modified Ca-Based Sorbents at Moderate to High Temperatures 被引量:3
4
作者 DezhenChen XiongpingWang +1 位作者 TongZhu HeshengZhang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2003年第3期283-288,203,共7页
Modified Ca-based sorbents were obtained by adding sodium alkali into Ca(OH)2 and CaCO3. Reactive properties of modified Ca-based sorbents with acidic gases were investigated through reacting with gaseous HC1 at 450-... Modified Ca-based sorbents were obtained by adding sodium alkali into Ca(OH)2 and CaCO3. Reactive properties of modified Ca-based sorbents with acidic gases were investigated through reacting with gaseous HC1 at 450-760℃, and SEM and XRD technologies were adopted to get information on the reaction mechanism. Experimental data showed that HC1 dry removal efficiencies increased with temperature before 700℃ for all of the investigated sorbents, and there existed improved sorbents that corresponded to the highest removal efficiencies under the similar conditions. SEM photographs exhibited morphology difference between original and improved sorbents both before and after the reaction; and displayed that improved sorbents formed more porous product layers than original sorbents especially at higher temperature when product sintering became heavier, which is favorable to HC1 dry removal. XRD analysis showed that (1) improved Ca(OH)2 and CaCO3 were less crystalline than original lime and limestone; (2) the reaction product species of improved Ca(OH)2 changed with reaction temperature, while for original Ca(OH)2 the same product species appeared for all of the tested temperatures; and (3) for improved CaCO3, the only product at lower temperatures was CaCl2.2H2O and more product species were produced when temperature was higher than 650℃, but no CaCl2.Ca(OH)2.H2O formed at 700℃, while for the case of original CaCO3, the undesired CaCl2.Ca(OH)2.H2O appeared at 700℃. Presently, reaction temperature interval of 650-700℃ is recommended for improved Ca(OH2) to get the highest efficiency, for improved CaCO3 reaction at higher temperature deserves further investigation to make a good choice. 展开更多
关键词 HC1 dry removal improved Ca(OH)2 and CaCO3 Ca-based sorbent reaction temperature product species
原文传递
Experimental Study on Pore Distribution Characters and Convert Rate of CaO
5
作者 LiJIA YanyanZENG TaoZHANG 《Journal of Thermal Science》 SCIE EI CAS CSCD 2005年第1期87-91,共5页
During the reaction between calcium sorbents and SO2, calcium sorbents are first calcined and converted into CaO. CaO can be obtained by calcining Ca(OH)2or CaCO3. The porosity of the sorbent is increased because of c... During the reaction between calcium sorbents and SO2, calcium sorbents are first calcined and converted into CaO. CaO can be obtained by calcining Ca(OH)2or CaCO3. The porosity of the sorbent is increased because of calcination and is decreased because of sulfurization. In the calcination process H2O or CO2 is escaped from the particles and pores are formed in particles. The reaction or convert rate of CaO is influenced strongly by the pore structure characters. From Ca(OH)2 to CaO the escape velocity of H2O or its mass transfer is one of the key factors influencing the pore forming. During calcination process different healing velocity, different heating time and temperature were suggested. The temperature rising rate and calcining temperature play important role to the pore structure. The convert rates of CaO obtained through different calcining conditions were investigated experimentally. Some interesting results were showed that the calcium utilization of CaO particles is determined not only by the special surface area and total pore volume, but also by pore-size distribution. The main factor influencing the sulfation is the pore diameter distribution at lower sulfation temperature. For higher reaction temperature specific volume is the important reason. But pore-size distribution is strongly influenced by heat flux and temperature in the calcining process. 展开更多
关键词 pore-size distribution CALCINE desulfurization.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部