A series of Ce, H3PW12O40 co-doped TiO2 hollow fibers photocatalysts have been prepared by sol-gel method using ammonium ceric nitrate, H3PW12O40 and tetrabutyltitanate as precursors and cotton fibers as template, fol...A series of Ce, H3PW12O40 co-doped TiO2 hollow fibers photocatalysts have been prepared by sol-gel method using ammonium ceric nitrate, H3PW12O40 and tetrabutyltitanate as precursors and cotton fibers as template, followed by calcination at 500 ℃ in N2 atmosphere for 2 h. Scanning electron microscopy, X-ray diffraction, nitrogen adsorption-desorption mea- surements, and UV-Vis spectroscopy are employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The photo- catalytic performance of the samples has been studied by photodegradation phenol in water under UV and visible light irradiation. The results show that the TiO2 fiber materials have hollow structures, and the co-doped TiO2 hollow fibers exhibit higher photocatalytic activities for the degradation of phenol than un-doped, single-doped TiO2 hollow fibers under UV and visible light. In addition, the recyclability of co-doped TiO2 fibers is also confirmed that the TiO2 fiber retains ca. 90% of its activity after being used four times. It is shown that the co-doped TiO2 fibers can be activated by visible light and may be potentially applied to the treatment of water contaminated by organic pollutants. The synergistic effect of Ce and H3PW12O40 co-doping plays an important role in improving the photocatalytic activity.展开更多
The development of well-defined TiO2 nanoarchitectures is a versatile strategy to achieve high-efficiency photocatalytic performance.In this study,mesoporous TiO2 nanofibers consisting of oriented nanocrystals were fa...The development of well-defined TiO2 nanoarchitectures is a versatile strategy to achieve high-efficiency photocatalytic performance.In this study,mesoporous TiO2 nanofibers consisting of oriented nanocrystals were fabricated by a facile vapothermal-assisted topochemical transformation of preformed H-titanate nanobelts.The vapothermal temperature is crucial in tuning the microstructures and photocatalytic redox properties of the resulting mesoporous TiO2 nanofibers.The microstructures were characterized with XRD,TEM,XPS and nitrogen adsorption-desorption isotherms,etc.The photocatalytic activities were evaluated by photocatalytic oxidation of organic pollutant(Rhodamine B as an example)as well as photocatalytic reduction of water to generate hydrogen(H2).The nanofibers vapothermally treated at 150°C showed the highest photocatalytic activity in both oxidation and reduction reactions,2 times higher than that of P25.The oriented alignment and suitable mesoporosity in the resulting nanofiber architecture were crucial for enhancing photocatalytic performances.The oriented alignment of anisotropic anatase nanocrystals shall facilitate faster vectorial charge transportation along the nanofibers architecture.And,the suitable mesoporosity and high surface area would also effectively enhance the mass exchange during photocatalytic reactions.We also demonstrate that efficient energy-recovering photocatalytic water treatments could be accomplished by a cascading oxic-anoxic process where the dye is degraded in the oxic phase and hydrogen is generated in the successive anoxic phase.This study showcases a novel and facile method to fabricate mesoporous TiO2 nanofibers with high photocatalytic activity for both clean energy production and environmental purification.展开更多
Nanoscale titanium dioxide functional films were prepared on the surface of the cotton woven fabric and the polyester knitted fabric at room temperature by Radio Frequency (RF) magnetron sputtering process. The surf...Nanoscale titanium dioxide functional films were prepared on the surface of the cotton woven fabric and the polyester knitted fabric at room temperature by Radio Frequency (RF) magnetron sputtering process. The surface microstructure and morphology were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). Photocatalytic property of two treated fabrics was tested in solar and ultraviolet (UV) radiation respectively, and their photocatalytic activity was compared. The results showed that the nanoscale titanium dioxide deposited on the surface of the treated fabrics was at different anastasia phase. The treated fabrics have excellent photocatalytic property, and after 30 launderings, the photocatalytic activity still maintained at a high level. Also, it indicated that the photocatalytic activity of the treated fabrics in UV radiation was higher than in solar radiation, but the effect wasn't very distinct. And at the same experimental magnetron sputtering parameters, the cotton coated with the nanoscale titanium dioxide showed better performance than the polyester fabric coated with the nanoscale titanium dioxide in terms of the photocatalytic property.展开更多
Expanded bed adsorption (EBA) has been widely used in industrial downstream bioprocessing. Solid matrix is the principal pillar supporting the successful application of EBA. A novel spherical cellulose-titanium dioxid...Expanded bed adsorption (EBA) has been widely used in industrial downstream bioprocessing. Solid matrix is the principal pillar supporting the successful application of EBA. A novel spherical cellulose-titanium dioxide composite matrix was prepared through the method of water-in-oil suspension thermal regeneration. Its typical physical properties were wet density 1.18g.cm-3, diameters in the range of 100-300um, porosity 85.5%, and water content 72.3%. Expansion characteristics and liquid mixing performance of the matrix in expanded bed were investigated using water and 10% (by mass) glycerol solution as mobile phases. The results indicate that the custom-assembled matrix has a stable flow hydrodynamics and exhibits the same degree of liquid-phase mixing or column efficiency as the commercially available Streamline adsorbent.展开更多
The adsorption of fibrinogen can be used as a quick indicator of surface haemocompatibility because of its prominent role in coagulation and platelet adhesion. In this work the molecular interaction between fibrinogen...The adsorption of fibrinogen can be used as a quick indicator of surface haemocompatibility because of its prominent role in coagulation and platelet adhesion. In this work the molecular interaction between fibrinogen and a modified titanium oxide surface/platelet has been studied by quartz crystal microbalanee with dissipation (QCM-D) in situ. In order to further characterize the conformation of adsorbed fibrinogen, αC and γ-chain antibody were used to check the orientation and denaturation of fibrinogen on solid surface. QCM-D investiga- tions revealed the fibrinogen have the trend to adsorb on hydropllilic surface in a side-on orientation by positively charged αC domains, which would reduce the exposure of platelet bonding site on γ chain and enable less platelet adhesion and be activated. These obser- vations suggest that certain conformations of adsorbed fibrinogen are less platelet adhesive than others, which opens a possibility for creating a non-platelet adhesive substrates.展开更多
Graphitic carbon nitride nanosheets (g-C3N4 NSs) hybridized nitrogen doped titanium dioxide (N-TiO2) nanofibers (GCN/NT NFs) have been synthesized in situ via a simple electrospinning process combined with a mod...Graphitic carbon nitride nanosheets (g-C3N4 NSs) hybridized nitrogen doped titanium dioxide (N-TiO2) nanofibers (GCN/NT NFs) have been synthesized in situ via a simple electrospinning process combined with a modified heat-etching method. The prepared GCN/NT NFs were characterized by a variety of methods and their photocatalytic activities were evaluated by hydrogen (H2) production from water splitting and degradation of rhodamine B in aqueous solution. It was found that the GCN/NT NFs have a mesoporous structure, composed of g-C3N4 NSs and N-doped TiO2 crystallites. The g-C3N4 NSs synthesized after heat-etching were found to be embedded in, and covered, the hybrid NFs to form stable interfaces. The partial decomposition of g-C3N4 releases its nitrogen content which eventually gets doped into the nearby TiO2 skeleton. The GCN/NT NFs give a high photocatalytic H2 production rate of 8,931.3 μmol·h^-1·g^-1 in aqueous methanol solution under simulated solar light. Such a highly efficient photocatalytic perfor- mance can be ascribed to the combined effects of g-C3N4 NSs and N-doped TiO2 with enhanced light absorption intensity and improved electron transport ability. Also, the large surface area of the mesoporous NFs minimizes light reflection on the surface and provides more surface-active sites. This work highlights the potential of quasi-one dimensional hybrid materials in the field of solar energy conversion.展开更多
A facile strategy was designed for the fabrication of Fe3O4-nanoparticle- decorated TiO2 nanofiber hierarchical heterostructures (FTHs) by combining the versatility of the electrospinning technique and the hydrother...A facile strategy was designed for the fabrication of Fe3O4-nanoparticle- decorated TiO2 nanofiber hierarchical heterostructures (FTHs) by combining the versatility of the electrospinning technique and the hydrothermal growth method. The hierarchical architecture of Fe3O4 nanoparticles decorated on TiO2 nanofibers enables the successful integration of the binary composite into batteries to address structural stability and low capacity. In the resulting unique architecture of FTHs, the 1D heterostructures relieve the strain caused by severe volume changes of Fe3O4 during numerous charge-discharge cycles, and thus suppress the degradation of the electrode material. As a result, FTHs show excellent performance including higher reversible capacity, excellent cycle life, and good rate performance over a wide temperature range owing to the synergistic effect of the binary composition of TiO2 and Fe304 and the unique features of the hierarchical nanofibers.展开更多
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.41373127) and Liaon- ing Provincial Natural Science Foundation of China (No.2013020121).
文摘A series of Ce, H3PW12O40 co-doped TiO2 hollow fibers photocatalysts have been prepared by sol-gel method using ammonium ceric nitrate, H3PW12O40 and tetrabutyltitanate as precursors and cotton fibers as template, followed by calcination at 500 ℃ in N2 atmosphere for 2 h. Scanning electron microscopy, X-ray diffraction, nitrogen adsorption-desorption mea- surements, and UV-Vis spectroscopy are employed to characterize the morphology, crystal structure, surface structure, and optical absorption properties of the samples. The photo- catalytic performance of the samples has been studied by photodegradation phenol in water under UV and visible light irradiation. The results show that the TiO2 fiber materials have hollow structures, and the co-doped TiO2 hollow fibers exhibit higher photocatalytic activities for the degradation of phenol than un-doped, single-doped TiO2 hollow fibers under UV and visible light. In addition, the recyclability of co-doped TiO2 fibers is also confirmed that the TiO2 fiber retains ca. 90% of its activity after being used four times. It is shown that the co-doped TiO2 fibers can be activated by visible light and may be potentially applied to the treatment of water contaminated by organic pollutants. The synergistic effect of Ce and H3PW12O40 co-doping plays an important role in improving the photocatalytic activity.
基金supported by the National Natural Science Foundation of China(21707173,51872341,51572209)the Science and Technology Program of Guangzhou(201707010095)+2 种基金the Start-up Funds for High-Level Talents of Sun Yat-sen University(38000-31131103)the Fundamental Research Funds for the Central Universities(19lgzd29)the China Postdoctoral Science Foundation(2017M622869)~~
文摘The development of well-defined TiO2 nanoarchitectures is a versatile strategy to achieve high-efficiency photocatalytic performance.In this study,mesoporous TiO2 nanofibers consisting of oriented nanocrystals were fabricated by a facile vapothermal-assisted topochemical transformation of preformed H-titanate nanobelts.The vapothermal temperature is crucial in tuning the microstructures and photocatalytic redox properties of the resulting mesoporous TiO2 nanofibers.The microstructures were characterized with XRD,TEM,XPS and nitrogen adsorption-desorption isotherms,etc.The photocatalytic activities were evaluated by photocatalytic oxidation of organic pollutant(Rhodamine B as an example)as well as photocatalytic reduction of water to generate hydrogen(H2).The nanofibers vapothermally treated at 150°C showed the highest photocatalytic activity in both oxidation and reduction reactions,2 times higher than that of P25.The oriented alignment and suitable mesoporosity in the resulting nanofiber architecture were crucial for enhancing photocatalytic performances.The oriented alignment of anisotropic anatase nanocrystals shall facilitate faster vectorial charge transportation along the nanofibers architecture.And,the suitable mesoporosity and high surface area would also effectively enhance the mass exchange during photocatalytic reactions.We also demonstrate that efficient energy-recovering photocatalytic water treatments could be accomplished by a cascading oxic-anoxic process where the dye is degraded in the oxic phase and hydrogen is generated in the successive anoxic phase.This study showcases a novel and facile method to fabricate mesoporous TiO2 nanofibers with high photocatalytic activity for both clean energy production and environmental purification.
基金Key Project of Chinese Ministry of Education (No.106089)
文摘Nanoscale titanium dioxide functional films were prepared on the surface of the cotton woven fabric and the polyester knitted fabric at room temperature by Radio Frequency (RF) magnetron sputtering process. The surface microstructure and morphology were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). Photocatalytic property of two treated fabrics was tested in solar and ultraviolet (UV) radiation respectively, and their photocatalytic activity was compared. The results showed that the nanoscale titanium dioxide deposited on the surface of the treated fabrics was at different anastasia phase. The treated fabrics have excellent photocatalytic property, and after 30 launderings, the photocatalytic activity still maintained at a high level. Also, it indicated that the photocatalytic activity of the treated fabrics in UV radiation was higher than in solar radiation, but the effect wasn't very distinct. And at the same experimental magnetron sputtering parameters, the cotton coated with the nanoscale titanium dioxide showed better performance than the polyester fabric coated with the nanoscale titanium dioxide in terms of the photocatalytic property.
基金Supported by the National Natural Science Foundation of China(No.20076042,No.20206029)and the Scientific Research Foundation of the State Education Ministry for the Returned Overseas Chinese Scholars(No.2002-247).
文摘Expanded bed adsorption (EBA) has been widely used in industrial downstream bioprocessing. Solid matrix is the principal pillar supporting the successful application of EBA. A novel spherical cellulose-titanium dioxide composite matrix was prepared through the method of water-in-oil suspension thermal regeneration. Its typical physical properties were wet density 1.18g.cm-3, diameters in the range of 100-300um, porosity 85.5%, and water content 72.3%. Expansion characteristics and liquid mixing performance of the matrix in expanded bed were investigated using water and 10% (by mass) glycerol solution as mobile phases. The results indicate that the custom-assembled matrix has a stable flow hydrodynamics and exhibits the same degree of liquid-phase mixing or column efficiency as the commercially available Streamline adsorbent.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.9732011CB606200 and No.81330031) and Fundamentat Research Funds for the Central Universities (No.SWJTU11CX054). The authors gratefully acknowledge assistance of Mr. Hai-bei Liu at Qsense company for consulting.
文摘The adsorption of fibrinogen can be used as a quick indicator of surface haemocompatibility because of its prominent role in coagulation and platelet adhesion. In this work the molecular interaction between fibrinogen and a modified titanium oxide surface/platelet has been studied by quartz crystal microbalanee with dissipation (QCM-D) in situ. In order to further characterize the conformation of adsorbed fibrinogen, αC and γ-chain antibody were used to check the orientation and denaturation of fibrinogen on solid surface. QCM-D investiga- tions revealed the fibrinogen have the trend to adsorb on hydropllilic surface in a side-on orientation by positively charged αC domains, which would reduce the exposure of platelet bonding site on γ chain and enable less platelet adhesion and be activated. These obser- vations suggest that certain conformations of adsorbed fibrinogen are less platelet adhesive than others, which opens a possibility for creating a non-platelet adhesive substrates.
文摘Graphitic carbon nitride nanosheets (g-C3N4 NSs) hybridized nitrogen doped titanium dioxide (N-TiO2) nanofibers (GCN/NT NFs) have been synthesized in situ via a simple electrospinning process combined with a modified heat-etching method. The prepared GCN/NT NFs were characterized by a variety of methods and their photocatalytic activities were evaluated by hydrogen (H2) production from water splitting and degradation of rhodamine B in aqueous solution. It was found that the GCN/NT NFs have a mesoporous structure, composed of g-C3N4 NSs and N-doped TiO2 crystallites. The g-C3N4 NSs synthesized after heat-etching were found to be embedded in, and covered, the hybrid NFs to form stable interfaces. The partial decomposition of g-C3N4 releases its nitrogen content which eventually gets doped into the nearby TiO2 skeleton. The GCN/NT NFs give a high photocatalytic H2 production rate of 8,931.3 μmol·h^-1·g^-1 in aqueous methanol solution under simulated solar light. Such a highly efficient photocatalytic perfor- mance can be ascribed to the combined effects of g-C3N4 NSs and N-doped TiO2 with enhanced light absorption intensity and improved electron transport ability. Also, the large surface area of the mesoporous NFs minimizes light reflection on the surface and provides more surface-active sites. This work highlights the potential of quasi-one dimensional hybrid materials in the field of solar energy conversion.
基金This work is financially supported by the fundamental research funds for the central universities, the National Natural Science Foundation of China (Grant Nos. 51372007 and 21301014).
文摘A facile strategy was designed for the fabrication of Fe3O4-nanoparticle- decorated TiO2 nanofiber hierarchical heterostructures (FTHs) by combining the versatility of the electrospinning technique and the hydrothermal growth method. The hierarchical architecture of Fe3O4 nanoparticles decorated on TiO2 nanofibers enables the successful integration of the binary composite into batteries to address structural stability and low capacity. In the resulting unique architecture of FTHs, the 1D heterostructures relieve the strain caused by severe volume changes of Fe3O4 during numerous charge-discharge cycles, and thus suppress the degradation of the electrode material. As a result, FTHs show excellent performance including higher reversible capacity, excellent cycle life, and good rate performance over a wide temperature range owing to the synergistic effect of the binary composition of TiO2 and Fe304 and the unique features of the hierarchical nanofibers.