Water-based rare-earth ferrite (Re xFe 3- xO 4)magnetic fluids were prepared by chemical co-precipitation method. The result shows that saturation magnetic intensity of ferrite magnetic fluids can be improved by addin...Water-based rare-earth ferrite (Re xFe 3- xO 4)magnetic fluids were prepared by chemical co-precipitation method. The result shows that saturation magnetic intensity of ferrite magnetic fluids can be improved by adding Dy 3+ and the saturation magnetic intensity will reach the highest if n(Fe)∶n(Dy 3+ )=30∶1. The modification and formation mechanism of Re xFe 3- xO 4 particles is discussed in detail. The physicochemical properties are investigated by the Gouy magnetic balance, IR, TEM, XRD, and EDX, etc.展开更多
The GIS (geographic information system) used for predicting the associated with upper-intrusive zone of hydrothermal alteration IOCG (iron-oxide copper gold) mineralizing systems is shown by example of the northea...The GIS (geographic information system) used for predicting the associated with upper-intrusive zone of hydrothermal alteration IOCG (iron-oxide copper gold) mineralizing systems is shown by example of the northeast of Russian. IOCG ore deposits can have enormous geological resources with significant reserves of base, precious and strategic metals, are economically attractive targets for mineral exploration worldwide, but are still unknown in the northeast Russian. It was localized in Tarinskiy ore node (eastern Yakutia) field of brecciated altered rocks with sulfide and iron-oxide cement is a first in eastern Yakutia nature anomaly of IOCG-type with iron-oxide Cu-Au ± U specialization, that was formed close to the surface of Rep-Yuruinskiy pluton. It should be of interest as a new precious metals world class deposit type in northeast of Russia.展开更多
Iron oxidation is a prevalent and important biogeochemical process in paddy soil,but little is known about whether and how microbially mediated iron oxidation is coupled with carbon assimilation,particularly under mic...Iron oxidation is a prevalent and important biogeochemical process in paddy soil,but little is known about whether and how microbially mediated iron oxidation is coupled with carbon assimilation,particularly under microaerobic conditions.Here,we investigated kinetics of CO_2 assimilation and Fe(Ⅱ)oxidation in an incubation experiment with paddy soil under suboxic conditions,and profiled the associated microbial community using DNA-stable isotope probing and 16S r RNA gene-based sequencing.The results showed that CO_2 assimilation and Fe(II)oxidation in the gradient tubes were predominantly mediated by the microbes enriched in the paddy soil,primarily Azospirillum and Magnetospirillum,as their relative abundances were higher in the^( 13)C heavy fractions compared to^( 12)C heavy fractions.This study provided direct evidence of chemoautotrophic microaerophiles linking iron oxidation and carbon assimilation at the oxic–anoxic interface in the paddy soil ecosystem.展开更多
文摘Water-based rare-earth ferrite (Re xFe 3- xO 4)magnetic fluids were prepared by chemical co-precipitation method. The result shows that saturation magnetic intensity of ferrite magnetic fluids can be improved by adding Dy 3+ and the saturation magnetic intensity will reach the highest if n(Fe)∶n(Dy 3+ )=30∶1. The modification and formation mechanism of Re xFe 3- xO 4 particles is discussed in detail. The physicochemical properties are investigated by the Gouy magnetic balance, IR, TEM, XRD, and EDX, etc.
文摘The GIS (geographic information system) used for predicting the associated with upper-intrusive zone of hydrothermal alteration IOCG (iron-oxide copper gold) mineralizing systems is shown by example of the northeast of Russian. IOCG ore deposits can have enormous geological resources with significant reserves of base, precious and strategic metals, are economically attractive targets for mineral exploration worldwide, but are still unknown in the northeast Russian. It was localized in Tarinskiy ore node (eastern Yakutia) field of brecciated altered rocks with sulfide and iron-oxide cement is a first in eastern Yakutia nature anomaly of IOCG-type with iron-oxide Cu-Au ± U specialization, that was formed close to the surface of Rep-Yuruinskiy pluton. It should be of interest as a new precious metals world class deposit type in northeast of Russia.
基金funded by the National Natural Science Foundations of China(41420104007,41330857,and 41701295)Guangdong Natural Science Funds for Distinguished Young Scholar(2014A030306041)and Special Support Program(2016)
文摘Iron oxidation is a prevalent and important biogeochemical process in paddy soil,but little is known about whether and how microbially mediated iron oxidation is coupled with carbon assimilation,particularly under microaerobic conditions.Here,we investigated kinetics of CO_2 assimilation and Fe(Ⅱ)oxidation in an incubation experiment with paddy soil under suboxic conditions,and profiled the associated microbial community using DNA-stable isotope probing and 16S r RNA gene-based sequencing.The results showed that CO_2 assimilation and Fe(II)oxidation in the gradient tubes were predominantly mediated by the microbes enriched in the paddy soil,primarily Azospirillum and Magnetospirillum,as their relative abundances were higher in the^( 13)C heavy fractions compared to^( 12)C heavy fractions.This study provided direct evidence of chemoautotrophic microaerophiles linking iron oxidation and carbon assimilation at the oxic–anoxic interface in the paddy soil ecosystem.