期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
氧化铁和羟基氧化铁纳米结构的水热法制备及其表征 被引量:22
1
作者 钭启升 张辉 +1 位作者 邬剑波 杨德仁 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2007年第2期213-218,共6页
利用乙二醇辅助水热法制备氧化铁的纳米结构,系统研究了Fe3+和OH-的比例、乙二醇的含量、溶液浓度以及后续热处理对氧化铁纳米结构的影响,同时研究了不用形貌的氧化铁纳米结构对其磁性的影响.研究表明:当Fe3+和OH-的摩尔比>1:4时,... 利用乙二醇辅助水热法制备氧化铁的纳米结构,系统研究了Fe3+和OH-的比例、乙二醇的含量、溶液浓度以及后续热处理对氧化铁纳米结构的影响,同时研究了不用形貌的氧化铁纳米结构对其磁性的影响.研究表明:当Fe3+和OH-的摩尔比>1:4时,无论有无乙二醇的加入,所得样品都为六方相的α-Fe2O3纳米颗粒;当Fe3+和OH-的摩尔比<1:4,有乙二醇辅助时,所得样品为正交相飞机状的FeOOH纳米结构;当Fe3+和OH-的摩尔比<1:4,无乙二醇辅助时,所得样品为正交相的FeOOH纳米棒.经过600℃,1h热处理后,飞机状的:FeOOH和FeOOH的纳米棒都可以转化为多孔的飞机状α-Fe2O3和α-Fe2O3的纳米棒.溶液浓度的提高只会增加样品的尺寸而对其形貌没有太大的影响.形貌和尺寸不同对材料的磁性能有很大的影响. 展开更多
关键词 乙二醇辅助水热法 氧化铁纳米结构 羟基氧化铁纳米结构
下载PDF
Tailoring the surface structures of iron oxide nanorods to support Au nanoparticles for CO oxidation 被引量:4
2
作者 Wen Shi Tongtong Gao +3 位作者 Liyun Zhang Yanshuang Ma Zhongwen Liu Bingsen Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第12期1884-1894,共11页
Iron oxide supported Au nanomaterials are one of the most studied catalysts for low-temperature CO oxidation.Catalytic performance not only critically depends on the size of the supported Au nanoparticles(NPs)but also... Iron oxide supported Au nanomaterials are one of the most studied catalysts for low-temperature CO oxidation.Catalytic performance not only critically depends on the size of the supported Au nanoparticles(NPs)but also strongly on the chemical nature of the iron oxide.In this study,Au NPs supported on iron oxide nanorods with different surface properties throughβ-FeOOH annealing,at varying temperatures,were synthesized,and applied in the CO oxidation.Detailed characterizations of the interactions between Au NPs and iron oxides were obtained by X-ray diffraction,transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy.The results indicate that the surface hydroxyl group on the Au/FeOOH catalyst,before calcination(Au/FeOOH-fresh),could facilitate the oxygen adsorption and dissociation on positively charged Au,thereby contributing to the low-temperature CO oxidation reactivity.After calcination at 200℃,under air exposure,the chemical state of the supported Au NP on varied iron oxides partly changed from metal cation to Au0,along with the disappearance of the surface OH species.Au/FeOOH with the highest Au0 content exhibits the highest activity in CO oxidation,among the as-synthesized catalysts.Furthermore,good durability in CO oxidation was achieved over the Au/FeOOH catalyst for 12 h without observable deactivation.In addition,the advanced identical-location TEM method was applied to the gas phase reaction to probe the structure evolution of the Au/iron oxide series of the catalysts and support structure.A Au NP size-dependent Ostwald ripening process mediated by the transport of Au(CO)x mobile species under certain reaction conditions is proposed,which offers a new insight into the validity of the structure-performance relationship. 展开更多
关键词 Iron oxide nanorods Surface property Au nanoparticle CO oxidation Structure evolution
下载PDF
Solution chemistry back‐contact FTO/hematite interface engineering for efficient photocatalytic water oxidation 被引量:1
3
作者 Karen Cristina Bedin Beatriz Mouriño +6 位作者 Ingrid Rodríguez-Gutiérrez João Batista Souza Junior Gabriel Trindade dos Santos Jefferson Bettini Carlos Alberto Rodrigues Costa Lionel Vayssieres Flavio Leandro Souza 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第5期1247-1257,共11页
This work describes a simple yet powerful scalable solution chemistry strategy to create back‐contact rich interfaces between substrates such as commercial transparent conducting fluorine‐doped tin oxide coated glas... This work describes a simple yet powerful scalable solution chemistry strategy to create back‐contact rich interfaces between substrates such as commercial transparent conducting fluorine‐doped tin oxide coated glass(FTO)and photoactive thin films such as hematite for low‐cost water oxidation reaction.High‐resolution electron microscopy(SEM,TEM,STEM),atomic force microscopy(AFM),elemental chemical mapping(EELS,EDS)and photoelectrochemical(PEC)investigations reveal that the mechanical stress,lattice mismatch,electron energy barrier,and voids between FTO and hematite at the back‐contact interface as well as short‐circuit and detrimental reaction between FTO and the electrolyte can be alleviated by engineering the chemical composition of the precursor solutions,thus increasing the overall efficiency of these low‐cost photoanodes for water oxidation reaction for a clean and sustainable generation of hydrogen from PEC water‐splitting.These findings are of significant importance to improve the charge collection efficiency by minimizing electron‐hole recombination observed at back‐contact interfaces and grain boundaries in mesoporous electrodes,thus improving the overall efficiency and scalability of low‐cost PEC water splitting devices. 展开更多
关键词 NANOSTRUCTURE Iron oxide Water oxidation PHOTOANODE Surface engineering Chemical synthesis
下载PDF
Spin regulation on(Co,Ni)Se_(2)/C@FeOOH hollow nanocage accelerates water oxidation
4
作者 Yu Gu Xiaolei Wang +7 位作者 Muhammad Humayun Linfeng Li Huachuan Sun Xuefei Xu Xinying Xue Aziz Habibi‐Yangjeh Kristiaan Temst Chundong Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第3期839-850,共12页
Spin engineering is recognized as a promising strategy that modulates the association between d‐orbital electrons and the oxygenated species,and enhances the catalytic kinetics.However,few efforts have been made to c... Spin engineering is recognized as a promising strategy that modulates the association between d‐orbital electrons and the oxygenated species,and enhances the catalytic kinetics.However,few efforts have been made to clarify whether spin engineering could make a considerable enhancement for electrocatalytic water oxidation.Herein,we report the spin engineering of a nanocage‐structured(Co,Ni)Se_(2)/C@FeOOH,that showed significant oxygen evolution reaction(OER)activity.Magnetization measurement presented that the(Co,Ni)Se_(2)/C@FeOOH sample possesses higher polarization spin number(μb=6.966μB/f.u.)compared with that of the(Co,Ni)Se_(2)/C sample(μb=6.398μB/f.u.),for which the enlarged spin polarization number favors the adsorption and desorption energy of the intermediate oxygenated species,as confirmed by surface valance band spectra.Consequently,the(Co,Ni)Se_(2)/C@FeOOH affords remarkable OER product with a low overpotential of 241 mV at a current of 10 mA cm^(-2) and small Tafel slope of 44 mV dec^(-1) in 1.0 mol/L KOH alkaline solution,significantly surpassing the parent(Co,Ni)Se_(2)/C catalyst.This work will trigger a solid step for the design of highly‐efficient OER electrocatalysts. 展开更多
关键词 Spin engineering d‐Orbital electron Hollownanocage FEOOH Oxygen evolution reaction
下载PDF
One-dimensional iron oxides nanostructures 被引量:2
5
作者 CHEN Di XIONG Shi +3 位作者 RAN SiHan LIU Bin WANG LiMing SHEN GuoZhen 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第7期1190-1199,共10页
Iron oxides, including α-Fe2O3, γ-Fe2O3, Fe3O4, etc. are one of the most widely investigated materials for their fundamental properties and potential applications. One-dimensional (1-D) iron oxides nanostructures ... Iron oxides, including α-Fe2O3, γ-Fe2O3, Fe3O4, etc. are one of the most widely investigated materials for their fundamental properties and potential applications. One-dimensional (1-D) iron oxides nanostructures are the focus of recent research activi- ties because of their wide applications in magnetic refrigeration, information storage, electronics, catalysts, Li-ion battery, pigment, gas sensors, etc. This review covers the recent progress in the synthesis, properties and applications of 1-D iron oxides nanostructures. The paper begins with the introduction to 1-D iron oxides nanostructures, followed by the typical synthetic methods developed for the synthesis of 1-D iron oxides nanostructures. Then, the typical 1-D iron oxides nanostructures, in- cluding nanowires/nanorods, nanotubes, nanobelts, nanochalns, and special 3-D structures built on 1-D building blocks, are introduced in detail. The properties of 1-D iron oxides nanostructures are then discussed, focusing on the magnetic, gas sensing, and electrochemical and photocatalytic properties. Finally, we draw conclusions and look at the prospects of 1-D iron oxides nanostructures. 展开更多
关键词 iron oxide NANOWIRES MAGNETIC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部