铝电解槽内保持良好的热平衡可以减少铝电解过程中的能耗,而氧化铝周期性的下料会破坏电解槽热平衡。建立铝电解槽电解质浓度-热场瞬态模型,在精确模拟氧化铝浓度分布的基础上,研究下料期间电解质温度及热平衡的变化趋势。结果表明:氧...铝电解槽内保持良好的热平衡可以减少铝电解过程中的能耗,而氧化铝周期性的下料会破坏电解槽热平衡。建立铝电解槽电解质浓度-热场瞬态模型,在精确模拟氧化铝浓度分布的基础上,研究下料期间电解质温度及热平衡的变化趋势。结果表明:氧化铝下料时,电解质极距层局部温度降低5℃左右,上表面附近区域最多降低十几度;下料结束20 s内,逐渐恢复到正常温度;氧化铝下料会打破电解质内的热平衡,其中部分热量(最高达300 k W)用来加热氧化铝颗粒;20 s后,电解质会达到新的热平衡状态。展开更多
文摘铝电解槽内保持良好的热平衡可以减少铝电解过程中的能耗,而氧化铝周期性的下料会破坏电解槽热平衡。建立铝电解槽电解质浓度-热场瞬态模型,在精确模拟氧化铝浓度分布的基础上,研究下料期间电解质温度及热平衡的变化趋势。结果表明:氧化铝下料时,电解质极距层局部温度降低5℃左右,上表面附近区域最多降低十几度;下料结束20 s内,逐渐恢复到正常温度;氧化铝下料会打破电解质内的热平衡,其中部分热量(最高达300 k W)用来加热氧化铝颗粒;20 s后,电解质会达到新的热平衡状态。