A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%,...A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%, 96.7% and 92.6% after grinding for 4, 6, 1 and 1 h, respectively. Based on the chemical phase composition analysis and morphological characteristics of sulfidized products by XRD, SEM and TEM, a possible reaction mechanism, mechanically induced self-propagating reaction (MSR), was proposed to explain the sulfidization reaction. In addition, the floatability of sulfidized products was investigated for the recovery of metal sulfide and ZnS can be concentrated with a high concentration ratio and concentrate grade. By using the sulfidizing process, it is expected that the recovery of zinc from the wastes or purification of heavy-metal-containing hazardous residues is technically feasible.展开更多
The effect of preparation routes on the physical characteristics and activity of the Ag-MnOx/C composites toward the oxygen reduction reaction (ORR) in alkaline media were studied by X-ray diffraction (XRD), X-ray...The effect of preparation routes on the physical characteristics and activity of the Ag-MnOx/C composites toward the oxygen reduction reaction (ORR) in alkaline media were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersion spectroscopy (EDS) as well as scanning electron microscopy (SEM) and electrochemical techniques. The results show that more Ag and Mn species present on the surface of the Ag-MnOx/C composite prepared by two-step route (Ag-MnOx/C-2) compared to the one prepared by one-step route (Ag-MnOx/C-1), which contributes to its superior activity toward the ORR. The higher electron transfer number involved in the ORR can be observed on the Ag-MnOx/C-2 composite and its specific mass kinetic current at -0.6 V (vs Hg/HgO) is 46 mA/μg, which is 23 times that on the Ag/C. The peak power density of zinc-air battery with the Ag-MnOx/C-2 air electrode reaches up to 117 mW/cm^2.展开更多
Nanostructured zinc and zinc oxide films were prepared by magnetron sputtering processes and succeeded air annealing treatments. Comparison of reductive degradation rate of methyl orange (MO) by zinc films and photo...Nanostructured zinc and zinc oxide films were prepared by magnetron sputtering processes and succeeded air annealing treatments. Comparison of reductive degradation rate of methyl orange (MO) by zinc films and photocatalytic degradation rate of MO by zinc oxide films was carried out. Both reductive degradation and photocatalytic degradation process of MO by zinc and zinc oxide films can be described by first order kinetic model. It was found that although MO liquid was most quickly decolorized by metallic zinc films, the mineraliza- tion of MO was not thorough. Observation of extra ultraviolet absorption peaks indicated the formation of aromatic intermediates. On the other hand, although the photocatalytic degradation rate of MO liquid by ZnO films was only as about 1/4 large as the reductive degradation rate by zinc films, no signs of aromatic intermediates were found. Moreover, it was found that partially oxidized zinc oxide film showed higher photocatalytic efficiency than the totally oxidized ZnO films. Synergy effect between zinc and zinc oxide phase in the partially oxidized films was considered to be responsible for the higher photocatalytic efficiency.展开更多
We report a simple and green approach to synthesize reduced graphene oxide (RGO) nanosheets at room temperature based on Zn reduction of exfoliated GO. The evolution of GO to RGO has been characterized by X-ray diff...We report a simple and green approach to synthesize reduced graphene oxide (RGO) nanosheets at room temperature based on Zn reduction of exfoliated GO. The evolution of GO to RGO has been characterized by X-ray diffraction, UV-Vis absorption spectroscopy and Raman spectroscopy. The results of X-ray photoelectron spectroscopy reveal that the atomic ratio of carbon to oxygen in the RGO can be tuned from 1.67 to 13.7 through controlling the reduction time. Moreover, the conductivity of the RGO is measured to be 26.9±2.2 kS/m, much larger than those previously obtained by chemical reduction through other reducing agents. More importantly, the resistance of the RGO film with 20 nm thickhess can be as low as 2 kΩ/square, while a high transparency over 70% within a broad spectral range from 0.45 pm to 1.50 p.m can be retained. The proposed method is low-cost, eco-friendly and highly-eiffcient, the as-prepared thinner RGO films are useful in a variety of potential application fields such as optoelectronics, photovoltaics and electrochemistry by serving as an ultralight, flexible and transparent electrode material.展开更多
Ultraviolet (UV) photodetector constructed by ZnO material has attracted intense research and commercial interest. However, its photoresistivity and photoresonse are still unsatisfied. Herein, we report a novel meth...Ultraviolet (UV) photodetector constructed by ZnO material has attracted intense research and commercial interest. However, its photoresistivity and photoresonse are still unsatisfied. Herein, we report a novel method to assemble ZnO nanoparticles (NPs) onto the reduced graphite oxide (RGO) sheet by simple hydrothermal process without any surfactant. It is found that the high-quality crystallized ZnO NPs with the average diameter of 5 nm are well dispersed on the RGO surface, and the density of ZnO NPs can be readily controlled by the concentration of the precursor. The photodetector fabricated with this ZnO NPs- RGO hybrid structure demonstrates an excellent photoresponse for the UV irradiation. The results make this hybrid especially suitable as a novel material for the design and fabrication of high performance UV photodector.展开更多
Silver nanoparticles (Ag NPs) can effectively address the issue of antibiotic-resistant bacterial infections to reduce the potential toxicity of Ag NPs. Although challenging, it is, therefore, necessary to achieve the...Silver nanoparticles (Ag NPs) can effectively address the issue of antibiotic-resistant bacterial infections to reduce the potential toxicity of Ag NPs. Although challenging, it is, therefore, necessary to achieve the sustainable release of Ag+ ions from a finite amount of Ag NPs. This study aims at designing an efficient and benign antimicrobial silver-based ternary composite composed of photocatalysis zinc oxide (ZnO) and reduced graphene oxide (rGO) as a carrier, in which the reactive oxygen species (ROS) excited from ZnO and Ag+ ions released from the Ag NPs cooperate to realize an effective antibacterial activity against E. coli and S. aureus. The constant effective bacterial performance of the ternary photocatalyst with minimum Ag content can be attributed to the increase in the available quantity of ROS, which results from the enhanced separation efficiency of the photogenerated carriers. The proposed system notably realized the long-term sustainable release of Ag+ ions with low concentration for 30 days when compared with an equivalent amount of silver nitrate. Moreover, the use of the composite prevents biotoxicity and silver wastage, and imparts enhanced stability to the long-lasting antibacterial efficacy.展开更多
Photocatalytic hydrogen peroxide(H_(2)O_(2))production from O_(2) and H2O is an ideal process for solar‐to‐chemical energy conversion.Herein,ZnO nanorods are prepared via a simple hydrothermal method for photocataly...Photocatalytic hydrogen peroxide(H_(2)O_(2))production from O_(2) and H2O is an ideal process for solar‐to‐chemical energy conversion.Herein,ZnO nanorods are prepared via a simple hydrothermal method for photocatalytic H_(2)O_(2) production.The ZnO nanorods exhibit varied performance with different calcination temperatures.Benefiting from calcination,the separation efficiency of photo‐induced carriers is significantly improved,leading to the superior photocatalytic activity for H_(2)O_(2) production.The H_(2)O_(2) produced by ZnO calcined at 300℃ is 285μmol L^(−1),which is over 5 times larger than that produced by untreated ZnO.This work provides an insight into photocatalytic H2O2 production mechanism by ZnO nanorods,and presents a promising strategy to H2O2 production.展开更多
Introducing catalytically-active Fe and N into carbon materials results in promising FeNC catalysts for oxygen reduction reaction. However, the doped Fe and N species are frequently subject to heavy loss in a traditio...Introducing catalytically-active Fe and N into carbon materials results in promising FeNC catalysts for oxygen reduction reaction. However, the doped Fe and N species are frequently subject to heavy loss in a traditional carbonization process owing to Fe agglomeration and evaporation of N-contained small molecules. Besides, pyrolysis may make materials sintering which embeds a large number of active sites in the bulk phase and impedes direct exposure of reactive centers to the reactants. We here report that when calcinations, the addition of ZnCl2, an ordinary salt with very wide melting temperature range well covering the carbonization process of the precursor iron porphyrin, can significantly enhance the doping level of the active species and simultaneously create highly porous structures for FeNC catalysts. The obtained FeNC demonstrates ultrahigh catalytic activities even significantly better than Pt/C in oxygen reduction reaction.展开更多
Integrating two different catalytic active sites into one composite is a useful 2-in-1 strategy for designing high-efficient bifunctional catalysts,which can easily tailor the activity of each reaction.Hence,we adopt ...Integrating two different catalytic active sites into one composite is a useful 2-in-1 strategy for designing high-efficient bifunctional catalysts,which can easily tailor the activity of each reaction.Hence,we adopt the 2-in-1 strategy to design the metal oxyhydroxide supported on N-doped porous carbons(PA-CoFe@NPC)as the oxygen bifunctional catalyst,where NPC provides the activity for oxygen reduction reaction(ORR)while the metal oxyhydroxide is responsible for oxygen evolution reaction(OER).Results demonstrate that the PA-CoFe@NPC indeed exhibits both super ORR and OER activities.Impressively,using bifunctional PA-CoFe@NPC as the oxygen electrode,the resulting Zn-air battery exhibits outstanding charge and discharge performance with the peak power density of 156.3 mW cm^(-2),and also exhibits a long-term cycle stability with continuous cyclic charge and discharge of 170 hours that is obviously better than the 20%Pt/C+IrO_(2)based one.The 2-in-1 strategy in this work can be efficiently extended to design other bi-or multi-functional electrocatalysts.展开更多
A series of transition metal nitrides(MxNy,M=Fe,Co,Ni)nanoparticle(NP)composites caged in N-doped hollow porous carbon sphere(NHPCS)were prepared by impregnation and heat treatment methods.These composites combine the...A series of transition metal nitrides(MxNy,M=Fe,Co,Ni)nanoparticle(NP)composites caged in N-doped hollow porous carbon sphere(NHPCS)were prepared by impregnation and heat treatment methods.These composites combine the high catalytic activity of nitrides and the high-efficiency mass transfer characteristics of NHPCS.The oxygen reduction reaction results indicate that Fe2N/NHPCS has the synergistic catalytic performance of higher onset potential(0.96 V),higher electron transfer number(~4)and higher limited current density(1.4 times as high as that of commercial Pt/C).In addition,this material is implemented as the air catalyst for zinc−air battery that exhibits considerable specific capacity(795.1 mA·h/g)comparable to that of Pt/C,higher durability and maximum power density(173.1 mW/cm2).展开更多
The reactive adsorption desulfurization of model gasoline was carried out on Ni/ZnO-HY adsorbent.The Ni/ZnO-HY adsorbent was characterized by N2adsorption-desorption test(BET),X-ray diffractometry(XRD),and temperature...The reactive adsorption desulfurization of model gasoline was carried out on Ni/ZnO-HY adsorbent.The Ni/ZnO-HY adsorbent was characterized by N2adsorption-desorption test(BET),X-ray diffractometry(XRD),and temperature-programmed reduction(TPR)analysis.The test results have demonstrated that HY-zeolite is a feasible support for Ni/ZnO components used in reactive adsorption desulfurization.The results of XRD and TPR analyses showed that most of nickel element was present as Ni2+species with only a small part existing as Ni3+species,and the Ni2+species had interactions with HY-zeolite.Under the conditions of this study,which specified a 50% ratio of HY-zeolite in the adsorbent,a Zn/Ni molar ratio of 10,and a reduction temperature of 400℃,the Ni/ZnO-HY adsorbent showed the best desulfurization performance.The sulfur capacity of Ni/ZnO-HY adsorbent could be recovered to 92.19% of the fresh one after being subjected to regeneration at 500℃,and could be maintained at 82.17% of the fresh one after 5 regeneration cycles.展开更多
基金Doctoral Scientific Research Foundation of Shanxi Datong University(2014-B-11)National Natural Science Foundation of China(21174114)+3 种基金National Natural Science Foundation of China(21363021)Program for Changjiang Scholars and Innovative Research Team in University of M inistry of Education of China(IRT1177)Scientific and Technical plan project of Gansu province(1204GKCA006)Scientific and Technical Innovation Project of Northw est Normal University(nw nu-kjcxgc-03-63)~~
基金Project(50925417) supported by the China National Funds for Distinguished Young ScientistsProject(50830301) supported by the National Natural Science Foundation of China+1 种基金Projects(2010AA065203,2011AA061001) supported by the National High-tech Research Program of ChinaProject(NCET-10-0840) supported by the Program for New Century Excellent Talents in University,China
文摘A novel process for sulfidation of ZnO by co-grinding with sulfur and reductive additives (P, Fe, A1, and Mg) was developed. The sulfidation extent of ZnO with the addition of P, Fe, A1 or Mg can reach 85.2%, 81.6%, 96.7% and 92.6% after grinding for 4, 6, 1 and 1 h, respectively. Based on the chemical phase composition analysis and morphological characteristics of sulfidized products by XRD, SEM and TEM, a possible reaction mechanism, mechanically induced self-propagating reaction (MSR), was proposed to explain the sulfidization reaction. In addition, the floatability of sulfidized products was investigated for the recovery of metal sulfide and ZnS can be concentrated with a high concentration ratio and concentrate grade. By using the sulfidizing process, it is expected that the recovery of zinc from the wastes or purification of heavy-metal-containing hazardous residues is technically feasible.
基金Project(21406273)supported by the National Natural Science Foundation of China
文摘The effect of preparation routes on the physical characteristics and activity of the Ag-MnOx/C composites toward the oxygen reduction reaction (ORR) in alkaline media were studied by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersion spectroscopy (EDS) as well as scanning electron microscopy (SEM) and electrochemical techniques. The results show that more Ag and Mn species present on the surface of the Ag-MnOx/C composite prepared by two-step route (Ag-MnOx/C-2) compared to the one prepared by one-step route (Ag-MnOx/C-1), which contributes to its superior activity toward the ORR. The higher electron transfer number involved in the ORR can be observed on the Ag-MnOx/C-2 composite and its specific mass kinetic current at -0.6 V (vs Hg/HgO) is 46 mA/μg, which is 23 times that on the Ag/C. The peak power density of zinc-air battery with the Ag-MnOx/C-2 air electrode reaches up to 117 mW/cm^2.
文摘Nanostructured zinc and zinc oxide films were prepared by magnetron sputtering processes and succeeded air annealing treatments. Comparison of reductive degradation rate of methyl orange (MO) by zinc films and photocatalytic degradation rate of MO by zinc oxide films was carried out. Both reductive degradation and photocatalytic degradation process of MO by zinc and zinc oxide films can be described by first order kinetic model. It was found that although MO liquid was most quickly decolorized by metallic zinc films, the mineraliza- tion of MO was not thorough. Observation of extra ultraviolet absorption peaks indicated the formation of aromatic intermediates. On the other hand, although the photocatalytic degradation rate of MO liquid by ZnO films was only as about 1/4 large as the reductive degradation rate by zinc films, no signs of aromatic intermediates were found. Moreover, it was found that partially oxidized zinc oxide film showed higher photocatalytic efficiency than the totally oxidized ZnO films. Synergy effect between zinc and zinc oxide phase in the partially oxidized films was considered to be responsible for the higher photocatalytic efficiency.
基金V. ACKNOWLEDGMENTS This work is supported by the Ministry of Science and Technologyh of China (No.2011CB921403), the National Natural Science Foundation of China (No.10874165, No.90921013, No.11074231, and No.11004179) and Chinese Academy of Sciences .
文摘We report a simple and green approach to synthesize reduced graphene oxide (RGO) nanosheets at room temperature based on Zn reduction of exfoliated GO. The evolution of GO to RGO has been characterized by X-ray diffraction, UV-Vis absorption spectroscopy and Raman spectroscopy. The results of X-ray photoelectron spectroscopy reveal that the atomic ratio of carbon to oxygen in the RGO can be tuned from 1.67 to 13.7 through controlling the reduction time. Moreover, the conductivity of the RGO is measured to be 26.9±2.2 kS/m, much larger than those previously obtained by chemical reduction through other reducing agents. More importantly, the resistance of the RGO film with 20 nm thickhess can be as low as 2 kΩ/square, while a high transparency over 70% within a broad spectral range from 0.45 pm to 1.50 p.m can be retained. The proposed method is low-cost, eco-friendly and highly-eiffcient, the as-prepared thinner RGO films are useful in a variety of potential application fields such as optoelectronics, photovoltaics and electrochemistry by serving as an ultralight, flexible and transparent electrode material.
基金This work is supported by MOST of China (No.2011CB921403), the Chinese Academy of Science, and the National Natural Science Foundation of China (No.10874165, No.90921013, No.11074231, and No. 11004179).
文摘Ultraviolet (UV) photodetector constructed by ZnO material has attracted intense research and commercial interest. However, its photoresistivity and photoresonse are still unsatisfied. Herein, we report a novel method to assemble ZnO nanoparticles (NPs) onto the reduced graphite oxide (RGO) sheet by simple hydrothermal process without any surfactant. It is found that the high-quality crystallized ZnO NPs with the average diameter of 5 nm are well dispersed on the RGO surface, and the density of ZnO NPs can be readily controlled by the concentration of the precursor. The photodetector fabricated with this ZnO NPs- RGO hybrid structure demonstrates an excellent photoresponse for the UV irradiation. The results make this hybrid especially suitable as a novel material for the design and fabrication of high performance UV photodector.
基金supported by the National Natural Science Foundation of China(51472101,51572114,21773062,21577036)the Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials(JSKC17003)~~
文摘Silver nanoparticles (Ag NPs) can effectively address the issue of antibiotic-resistant bacterial infections to reduce the potential toxicity of Ag NPs. Although challenging, it is, therefore, necessary to achieve the sustainable release of Ag+ ions from a finite amount of Ag NPs. This study aims at designing an efficient and benign antimicrobial silver-based ternary composite composed of photocatalysis zinc oxide (ZnO) and reduced graphene oxide (rGO) as a carrier, in which the reactive oxygen species (ROS) excited from ZnO and Ag+ ions released from the Ag NPs cooperate to realize an effective antibacterial activity against E. coli and S. aureus. The constant effective bacterial performance of the ternary photocatalyst with minimum Ag content can be attributed to the increase in the available quantity of ROS, which results from the enhanced separation efficiency of the photogenerated carriers. The proposed system notably realized the long-term sustainable release of Ag+ ions with low concentration for 30 days when compared with an equivalent amount of silver nitrate. Moreover, the use of the composite prevents biotoxicity and silver wastage, and imparts enhanced stability to the long-lasting antibacterial efficacy.
文摘Photocatalytic hydrogen peroxide(H_(2)O_(2))production from O_(2) and H2O is an ideal process for solar‐to‐chemical energy conversion.Herein,ZnO nanorods are prepared via a simple hydrothermal method for photocatalytic H_(2)O_(2) production.The ZnO nanorods exhibit varied performance with different calcination temperatures.Benefiting from calcination,the separation efficiency of photo‐induced carriers is significantly improved,leading to the superior photocatalytic activity for H_(2)O_(2) production.The H_(2)O_(2) produced by ZnO calcined at 300℃ is 285μmol L^(−1),which is over 5 times larger than that produced by untreated ZnO.This work provides an insight into photocatalytic H2O2 production mechanism by ZnO nanorods,and presents a promising strategy to H2O2 production.
文摘Introducing catalytically-active Fe and N into carbon materials results in promising FeNC catalysts for oxygen reduction reaction. However, the doped Fe and N species are frequently subject to heavy loss in a traditional carbonization process owing to Fe agglomeration and evaporation of N-contained small molecules. Besides, pyrolysis may make materials sintering which embeds a large number of active sites in the bulk phase and impedes direct exposure of reactive centers to the reactants. We here report that when calcinations, the addition of ZnCl2, an ordinary salt with very wide melting temperature range well covering the carbonization process of the precursor iron porphyrin, can significantly enhance the doping level of the active species and simultaneously create highly porous structures for FeNC catalysts. The obtained FeNC demonstrates ultrahigh catalytic activities even significantly better than Pt/C in oxygen reduction reaction.
文摘Integrating two different catalytic active sites into one composite is a useful 2-in-1 strategy for designing high-efficient bifunctional catalysts,which can easily tailor the activity of each reaction.Hence,we adopt the 2-in-1 strategy to design the metal oxyhydroxide supported on N-doped porous carbons(PA-CoFe@NPC)as the oxygen bifunctional catalyst,where NPC provides the activity for oxygen reduction reaction(ORR)while the metal oxyhydroxide is responsible for oxygen evolution reaction(OER).Results demonstrate that the PA-CoFe@NPC indeed exhibits both super ORR and OER activities.Impressively,using bifunctional PA-CoFe@NPC as the oxygen electrode,the resulting Zn-air battery exhibits outstanding charge and discharge performance with the peak power density of 156.3 mW cm^(-2),and also exhibits a long-term cycle stability with continuous cyclic charge and discharge of 170 hours that is obviously better than the 20%Pt/C+IrO_(2)based one.The 2-in-1 strategy in this work can be efficiently extended to design other bi-or multi-functional electrocatalysts.
基金the National Natural Science Foundation of China(Nos.51702137,51802128)the Natural Science Foundation of Jiangsu Province,China(No.BK20181013)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(No.18KJB430013)the Foundation of State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering,China(No.2020-KF-20).
文摘A series of transition metal nitrides(MxNy,M=Fe,Co,Ni)nanoparticle(NP)composites caged in N-doped hollow porous carbon sphere(NHPCS)were prepared by impregnation and heat treatment methods.These composites combine the high catalytic activity of nitrides and the high-efficiency mass transfer characteristics of NHPCS.The oxygen reduction reaction results indicate that Fe2N/NHPCS has the synergistic catalytic performance of higher onset potential(0.96 V),higher electron transfer number(~4)and higher limited current density(1.4 times as high as that of commercial Pt/C).In addition,this material is implemented as the air catalyst for zinc−air battery that exhibits considerable specific capacity(795.1 mA·h/g)comparable to that of Pt/C,higher durability and maximum power density(173.1 mW/cm2).
基金financially supported by the National Natural Science Foundation of China(No.21276086)the Opening Project of State Key Laboratory of Chemical Engineering of East China University of Science and Technology(No.SKL-ChE-11C04)
文摘The reactive adsorption desulfurization of model gasoline was carried out on Ni/ZnO-HY adsorbent.The Ni/ZnO-HY adsorbent was characterized by N2adsorption-desorption test(BET),X-ray diffractometry(XRD),and temperature-programmed reduction(TPR)analysis.The test results have demonstrated that HY-zeolite is a feasible support for Ni/ZnO components used in reactive adsorption desulfurization.The results of XRD and TPR analyses showed that most of nickel element was present as Ni2+species with only a small part existing as Ni3+species,and the Ni2+species had interactions with HY-zeolite.Under the conditions of this study,which specified a 50% ratio of HY-zeolite in the adsorbent,a Zn/Ni molar ratio of 10,and a reduction temperature of 400℃,the Ni/ZnO-HY adsorbent showed the best desulfurization performance.The sulfur capacity of Ni/ZnO-HY adsorbent could be recovered to 92.19% of the fresh one after being subjected to regeneration at 500℃,and could be maintained at 82.17% of the fresh one after 5 regeneration cycles.