The mordenite membrane was prepared on a α-Al 2O 3 tube by in situ hydrothermal synthesis. The crystallization was carried out at 443 K for 2~4 days. Silica sol and sodium aluminate were used as the sources of silic...The mordenite membrane was prepared on a α-Al 2O 3 tube by in situ hydrothermal synthesis. The crystallization was carried out at 443 K for 2~4 days. Silica sol and sodium aluminate were used as the sources of silica and alumina, respectively, and tetraethylammonium bromide (TEABr) as the template. The molar composition of the parent solution was 11 4Na 2O∶1 0Al 2O 3∶40SiO 2∶2500H 2O∶1 5TEABr. SEM and XRD were used to characterize the powder product and the composite membrane. The synthesized mordenite membrane proved to be in a full coverage and an excellent intergrowth. The mordenite crystals were about 20~30 μm and the thickness of the mordenite membrane was 30~40 μm. Based on the SEM pictures of the membrane in the early stage of hydrothermal synthesis, a growth model for the mordenite membrane was assumed. At first a gel layer was formed on the surface of the alumina tube. Nucleation took place in the gel layer but not at the interface of the gel layer and bulk solution. The gel layer provided the nutrients for the growth of zeolite crystals. After the gel layer was consumed completely, the zeolite crystals or membrane were exposed to the bulk solution. The membrane separation test on the mordenite membrane showed that the permeances of pure H 2 and N 2 at 298 K were 6 92×10 -7 and 1 81×10 -7 mol/(m 2·s·Pa), respectively. The ideal selectivity of H 2/N 2 was 3 82, which is higher than that of Knudsen mechanism. It suggested that the mordenite membrane had the ability of molecular sieving.展开更多
文摘利用等离子体电解氧化技术在铝合金6063表面生成了氧化物陶瓷膜.测试了氧化膜表面厚度和硬度,观察了膜层表面形貌,分析了氧化陶瓷膜的成分,探讨了不同电流密度对形成陶瓷膜厚度和硬度的影响.结果表明:铝合金6063表面陶瓷膜的厚度和硬度随电流密度的增大而提高,但有一极限值平均电流密度极限值为25 A/dm2.;随氧化时间的延长而增厚增硬,但也有一极限值,氧化时间极限值为45 min.
文摘The mordenite membrane was prepared on a α-Al 2O 3 tube by in situ hydrothermal synthesis. The crystallization was carried out at 443 K for 2~4 days. Silica sol and sodium aluminate were used as the sources of silica and alumina, respectively, and tetraethylammonium bromide (TEABr) as the template. The molar composition of the parent solution was 11 4Na 2O∶1 0Al 2O 3∶40SiO 2∶2500H 2O∶1 5TEABr. SEM and XRD were used to characterize the powder product and the composite membrane. The synthesized mordenite membrane proved to be in a full coverage and an excellent intergrowth. The mordenite crystals were about 20~30 μm and the thickness of the mordenite membrane was 30~40 μm. Based on the SEM pictures of the membrane in the early stage of hydrothermal synthesis, a growth model for the mordenite membrane was assumed. At first a gel layer was formed on the surface of the alumina tube. Nucleation took place in the gel layer but not at the interface of the gel layer and bulk solution. The gel layer provided the nutrients for the growth of zeolite crystals. After the gel layer was consumed completely, the zeolite crystals or membrane were exposed to the bulk solution. The membrane separation test on the mordenite membrane showed that the permeances of pure H 2 and N 2 at 298 K were 6 92×10 -7 and 1 81×10 -7 mol/(m 2·s·Pa), respectively. The ideal selectivity of H 2/N 2 was 3 82, which is higher than that of Knudsen mechanism. It suggested that the mordenite membrane had the ability of molecular sieving.