通过1-乙基-3-甲基咪唑硫酸乙酯离子液体(EMIES)和对甲苯磺酸(p-TsOH)的混合物制备EMIES/p-TsOH型低共熔溶剂。其结构特征通过红外光谱、氢谱和热重技术进行了分析。并以EMIES/p-TsOH作为催化剂与萃取剂,H2O2作为氧化剂研究了其对模拟...通过1-乙基-3-甲基咪唑硫酸乙酯离子液体(EMIES)和对甲苯磺酸(p-TsOH)的混合物制备EMIES/p-TsOH型低共熔溶剂。其结构特征通过红外光谱、氢谱和热重技术进行了分析。并以EMIES/p-TsOH作为催化剂与萃取剂,H2O2作为氧化剂研究了其对模拟油中的硫化物的脱除性能。考察了反应温度、n(H2O2)/n(S)比、低共熔溶剂加入量及硫化物类型对脱硫效果的影响。在最佳的条件下,模拟油中二苯并噻吩(DBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)和苯并噻吩(BT)的脱除率分别为96.2%、92.2%和88.8%。经过五次循环使用后,DBT的脱除率仍达到93.6%。对该脱硫体系进行了动力学分析,其表观活化能为66.4 k J/mol。展开更多
Allelochemicals of Chinese-fir root was extracted by technology ofsupercritical CO_2 extraction under orthogonal experiment design, and it was used to analyzeallelopathic activity of Chinese-fir through bioassay of se...Allelochemicals of Chinese-fir root was extracted by technology ofsupercritical CO_2 extraction under orthogonal experiment design, and it was used to analyzeallelopathic activity of Chinese-fir through bioassay of seed germination. The results showed thatas to the available rate of allelochemicals, the pressure and temperature of extraction were themost important factors. The allelochemicals of Chinese-fir root extracted by pure CO_2 and ethanolmixed with CO_2 have different allelopathic activities to seed germination, and the allelochemicalsextracted by ethanol mixed with CO_2 had stronger inhibitory effects on seed germination than thatextracted by pure CO_2.展开更多
[Objective] This study was aimed to determine the optimal parameters for the extraction of perilla seed oil to obtain high-quality perilla seed oil and analyze its compositions. [Method] In this study, perilla seed oi...[Objective] This study was aimed to determine the optimal parameters for the extraction of perilla seed oil to obtain high-quality perilla seed oil and analyze its compositions. [Method] In this study, perilla seed oil was extracted using supercritical CO2 (SC-CO2). The effects of extraction time, temperature and pressure were investigated by single-factor experiments and orthogonal array testing (ORT). The chemical compositions of extracted perilla seed oil were investigated by GC-MS. [Result] The optimal conditions for the extraction of perilla seed oil using SC-CO2 were extraction time of 4 h, extraction temperature at 40 ℃, and extraction pressure at 23 MPa. Under these conditions, the extraction yield of perilla seed oil was maximized to 12.43%. GC-MS analysis revealed that perilla seed oil was a complex mixture containing 76.183% α-linolenic acid. [Conclusion] Supercritical CO2 extraction was proven to be an effective technology to extract oil from perilla seed, and GCMS was also a satisfactory method for analyzing the compositions of perilla seed oil.展开更多
合成并表征了一类新型离子液体1-烷基-3-羧甲基苯并咪唑双三氟甲磺酰亚胺盐,将其与双氧水组合用于脱除模型油中的硫化物.结果表明,当模型油与萃取/催化剂1-辛基-3-羧甲基苯并咪唑双三氟甲磺酰亚胺盐([C_2O_2OBIM][Tf2N])的质量比为5∶1,...合成并表征了一类新型离子液体1-烷基-3-羧甲基苯并咪唑双三氟甲磺酰亚胺盐,将其与双氧水组合用于脱除模型油中的硫化物.结果表明,当模型油与萃取/催化剂1-辛基-3-羧甲基苯并咪唑双三氟甲磺酰亚胺盐([C_2O_2OBIM][Tf2N])的质量比为5∶1,H_2O_2/S摩尔比为5∶1,于75℃反应1 h后,模型油中二苯并噻吩(DBT)脱硫率为98.8%;脱硫过程符合一级动力学方程,5种硫化物的脱硫速率大小顺序为二苯并噻吩(DBT)>4,6-二甲基二苯并噻吩(4,6-DMDBT)>苯并噻吩(BT)>2,5-二甲基噻吩(2,5-DMT)>噻吩(T),其中脱除DBT和BT的反应表观活化能分别为44.16和52.10 k J/mol.该离子液体循环再生使用14次,脱硫率无明显下降.该深度脱硫方法具有操作简便及条件温和的特点.展开更多
文摘通过1-乙基-3-甲基咪唑硫酸乙酯离子液体(EMIES)和对甲苯磺酸(p-TsOH)的混合物制备EMIES/p-TsOH型低共熔溶剂。其结构特征通过红外光谱、氢谱和热重技术进行了分析。并以EMIES/p-TsOH作为催化剂与萃取剂,H2O2作为氧化剂研究了其对模拟油中的硫化物的脱除性能。考察了反应温度、n(H2O2)/n(S)比、低共熔溶剂加入量及硫化物类型对脱硫效果的影响。在最佳的条件下,模拟油中二苯并噻吩(DBT)、4,6-二甲基二苯并噻吩(4,6-DMDBT)和苯并噻吩(BT)的脱除率分别为96.2%、92.2%和88.8%。经过五次循环使用后,DBT的脱除率仍达到93.6%。对该脱硫体系进行了动力学分析,其表观活化能为66.4 k J/mol。
基金This paper was supported by Natural Science Foundation of Fujian Province (B0010020)
文摘Allelochemicals of Chinese-fir root was extracted by technology ofsupercritical CO_2 extraction under orthogonal experiment design, and it was used to analyzeallelopathic activity of Chinese-fir through bioassay of seed germination. The results showed thatas to the available rate of allelochemicals, the pressure and temperature of extraction were themost important factors. The allelochemicals of Chinese-fir root extracted by pure CO_2 and ethanolmixed with CO_2 have different allelopathic activities to seed germination, and the allelochemicalsextracted by ethanol mixed with CO_2 had stronger inhibitory effects on seed germination than thatextracted by pure CO_2.
基金Supported by Undergraduate Innovation Training Program of Jiangsu Province(201610327010Z)~~
文摘[Objective] This study was aimed to determine the optimal parameters for the extraction of perilla seed oil to obtain high-quality perilla seed oil and analyze its compositions. [Method] In this study, perilla seed oil was extracted using supercritical CO2 (SC-CO2). The effects of extraction time, temperature and pressure were investigated by single-factor experiments and orthogonal array testing (ORT). The chemical compositions of extracted perilla seed oil were investigated by GC-MS. [Result] The optimal conditions for the extraction of perilla seed oil using SC-CO2 were extraction time of 4 h, extraction temperature at 40 ℃, and extraction pressure at 23 MPa. Under these conditions, the extraction yield of perilla seed oil was maximized to 12.43%. GC-MS analysis revealed that perilla seed oil was a complex mixture containing 76.183% α-linolenic acid. [Conclusion] Supercritical CO2 extraction was proven to be an effective technology to extract oil from perilla seed, and GCMS was also a satisfactory method for analyzing the compositions of perilla seed oil.
文摘合成并表征了一类新型离子液体1-烷基-3-羧甲基苯并咪唑双三氟甲磺酰亚胺盐,将其与双氧水组合用于脱除模型油中的硫化物.结果表明,当模型油与萃取/催化剂1-辛基-3-羧甲基苯并咪唑双三氟甲磺酰亚胺盐([C_2O_2OBIM][Tf2N])的质量比为5∶1,H_2O_2/S摩尔比为5∶1,于75℃反应1 h后,模型油中二苯并噻吩(DBT)脱硫率为98.8%;脱硫过程符合一级动力学方程,5种硫化物的脱硫速率大小顺序为二苯并噻吩(DBT)>4,6-二甲基二苯并噻吩(4,6-DMDBT)>苯并噻吩(BT)>2,5-二甲基噻吩(2,5-DMT)>噻吩(T),其中脱除DBT和BT的反应表观活化能分别为44.16和52.10 k J/mol.该离子液体循环再生使用14次,脱硫率无明显下降.该深度脱硫方法具有操作简便及条件温和的特点.