Oxidation pressure leaching was proposed to selectively dissolve Li from spent LiFePO_(4) batteries in a stoichiometric sulfuric acid solution.Using O_(2) as an oxidant and stoichiometric sulfuric acid as leaching age...Oxidation pressure leaching was proposed to selectively dissolve Li from spent LiFePO_(4) batteries in a stoichiometric sulfuric acid solution.Using O_(2) as an oxidant and stoichiometric sulfuric acid as leaching agent,above 97% of Li was leached into the solution,whereas more than 99% of Fe remained in the leaching residue,enabling a relatively low cost for one-step separation of Li and Fe.And then,by adjusting the pH of leachate,above 95% of Li was recovered in the form of the Li_(3)PO_(4) product through iron removal and chemical precipitation of phosphate.展开更多
The pressure leaching mechanism of chalcopyrite was studied by both leaching tests and in-situ electrochemical measurements. The effects of leaching temperature, oxygen partial pressure, and calcium lignosulphonate, o...The pressure leaching mechanism of chalcopyrite was studied by both leaching tests and in-situ electrochemical measurements. The effects of leaching temperature, oxygen partial pressure, and calcium lignosulphonate, on copper extraction and iron extraction of chalcopyrite pressure leaching were investigated. The leaching rate is accelerated by increasing the leaching temperature from 120 to 150 ℃ and increasing oxygen partial pressure to 0.7 MPa. The release of iron is faster than that of copper due to the formation of iron-depleted sulfides. Under the optimal leaching conditions without calcium lignosulphonate, the copper and iron extraction rates are 79% and 81%, respectively. The leaching process is mixedly controlled by surface reaction and product layer diffusion with an activation energy of 36.61 k J/mol. Calcium lignosulphonate can effectively remove the sulfur passive layer, and the activation energy is 45.59 k J/mol, suggesting that the leaching process with calcium lignosulphonate is controlled by surface chemical reactions. Elemental sulfur is the main leaching product, which is mixed with iron-depleted sulfides and leads to the passivation of chalcopyrite. Electrochemical studies suggest that increasing the oxygen partial pressure leads to increasing the cathodic reaction rate and weakening the passivation of chalcopyrite.展开更多
Carbonate decomposition of carbonic refractory gold ore and the following pressure oxidation were studied.In the carbonate decomposition procedure,the effects of liquid-to-solid ratio and reaction time on decompositio...Carbonate decomposition of carbonic refractory gold ore and the following pressure oxidation were studied.In the carbonate decomposition procedure,the effects of liquid-to-solid ratio and reaction time on decomposition ratio of carbonate were investigated.The experimental result shows that the decomposition ratio of carbonate is 98.24%under the conditions of liquid-to-solid ratio of 5:1,Fe^(3+)concentration of 20 g/L,sulfuric acid concentration of 20 g/L,reaction temperature of 80 ℃ and reaction time of 2 h.Then,the slurry obtained from carbonate decomposition was put into the titanium autoclave for pressure oxidation leaching.Effects of liquid-to-solid ratio,temperature,time and oxygen partial pressure on sulfur oxidation ratio were studied during pressure oxidation.With the prolonged time,pyrite and arsenopyrite are oxidized to ferric subsulfate,hydrated ferric sulfate and jarosite,resulting in the increasing residue ratio.The residue ratio and the sulfur content in the residue can be decreased by ferric subsulfate dissolution.The oxidation ratio of the sulfur is 99.35% under the conditions of oxidation time of 4 h,temperature of 210 ℃,oxygen partial pressure of 0.8 MPa and stirring speed of 600 r/min.展开更多
基金the financial supports from the National Natural Science Foundation of China(Nos.51804083,52104395,21906031)the Natural Science Foundation of Guangdong Province,China(No.2019A1515011628)+1 种基金the Science and Technology Planning Project of Guangdong Province,China(No.2017B090907026)the Special Program of Guangdong Academy of Sciences,China(Nos.2019GDASYL-0103069,2020GDASYL-0104027,2020GDASYL-0302004,2020GDASYL-0302009,2021GDASYL-0302004)。
文摘Oxidation pressure leaching was proposed to selectively dissolve Li from spent LiFePO_(4) batteries in a stoichiometric sulfuric acid solution.Using O_(2) as an oxidant and stoichiometric sulfuric acid as leaching agent,above 97% of Li was leached into the solution,whereas more than 99% of Fe remained in the leaching residue,enabling a relatively low cost for one-step separation of Li and Fe.And then,by adjusting the pH of leachate,above 95% of Li was recovered in the form of the Li_(3)PO_(4) product through iron removal and chemical precipitation of phosphate.
基金supported by the National Natural Science Foundation of China(Nos.51574072,51434001)the Fundamental Research Funds for the Central Universities,China(No.2025028)。
文摘The pressure leaching mechanism of chalcopyrite was studied by both leaching tests and in-situ electrochemical measurements. The effects of leaching temperature, oxygen partial pressure, and calcium lignosulphonate, on copper extraction and iron extraction of chalcopyrite pressure leaching were investigated. The leaching rate is accelerated by increasing the leaching temperature from 120 to 150 ℃ and increasing oxygen partial pressure to 0.7 MPa. The release of iron is faster than that of copper due to the formation of iron-depleted sulfides. Under the optimal leaching conditions without calcium lignosulphonate, the copper and iron extraction rates are 79% and 81%, respectively. The leaching process is mixedly controlled by surface reaction and product layer diffusion with an activation energy of 36.61 k J/mol. Calcium lignosulphonate can effectively remove the sulfur passive layer, and the activation energy is 45.59 k J/mol, suggesting that the leaching process with calcium lignosulphonate is controlled by surface chemical reactions. Elemental sulfur is the main leaching product, which is mixed with iron-depleted sulfides and leads to the passivation of chalcopyrite. Electrochemical studies suggest that increasing the oxygen partial pressure leads to increasing the cathodic reaction rate and weakening the passivation of chalcopyrite.
基金Project(51404296)supported by the Young Scientists Fund of National Natural Science Foundation of ChinaProject(134414)supported by the Postdoctoral Funded Program of Central South University,China
文摘Carbonate decomposition of carbonic refractory gold ore and the following pressure oxidation were studied.In the carbonate decomposition procedure,the effects of liquid-to-solid ratio and reaction time on decomposition ratio of carbonate were investigated.The experimental result shows that the decomposition ratio of carbonate is 98.24%under the conditions of liquid-to-solid ratio of 5:1,Fe^(3+)concentration of 20 g/L,sulfuric acid concentration of 20 g/L,reaction temperature of 80 ℃ and reaction time of 2 h.Then,the slurry obtained from carbonate decomposition was put into the titanium autoclave for pressure oxidation leaching.Effects of liquid-to-solid ratio,temperature,time and oxygen partial pressure on sulfur oxidation ratio were studied during pressure oxidation.With the prolonged time,pyrite and arsenopyrite are oxidized to ferric subsulfate,hydrated ferric sulfate and jarosite,resulting in the increasing residue ratio.The residue ratio and the sulfur content in the residue can be decreased by ferric subsulfate dissolution.The oxidation ratio of the sulfur is 99.35% under the conditions of oxidation time of 4 h,temperature of 210 ℃,oxygen partial pressure of 0.8 MPa and stirring speed of 600 r/min.