Background: The physiological and biochemical demands of intense exercise elicit both muscle-based and systemic responses. The main adaptations to endurance exercise include the correction of electrolyte imbalance, a ...Background: The physiological and biochemical demands of intense exercise elicit both muscle-based and systemic responses. The main adaptations to endurance exercise include the correction of electrolyte imbalance, a decrease in glycogen storage and the increase of oxidative stress, intestinal permeability, muscle damage, and systemic inflammatory response. Adaptations to exercise might be influenced by the gut microbiota, which plays an important role in the production, storage, and expenditure of energy obtained from the diet as well as in inflammation,redox reactions, and hydration status.Methods: A systematic and comprehensive search of electronic databases, including MEDLINE, Scopus, Clinical Trials.gov, Science Direct,Springer Link, and EMBASE was done. The search process was completed using the keywords: "endurance", "exercise", "immune response","microbiota", "nutrition", and "probiotics".Results: Reviewed literature supports the hypothesis that intestinal microbiota might be able to provide a measureable, effective marker of an athlete's immune function and that microbial composition analysis might also be sensitive enough to detect exercise-induced stress and metabolic disorders. The review also supports the hypothesis that modifying the microbiota through the use of probiotics could be an important therapeutic tool to improve athletes' overall general health, performance, and energy availability while controlling inflammation and redox levels.Conclusion: The present review provides a comprehensive overview of how gut microbiota may have a key role in controlling the oxidative stress and inflammatory responses as well as improving metabolism and energy expenditure during intense exercise.展开更多
NiFe(oxy)hydroxides nanosheets were synthesized on nickel foams via co-precipitation and electrochemical activation. It is found that the phosphate precursors(Na_(3)PO_(4), Na_(2)HPO_(4)and NaH_(2)PO_(4)) have diverse...NiFe(oxy)hydroxides nanosheets were synthesized on nickel foams via co-precipitation and electrochemical activation. It is found that the phosphate precursors(Na_(3)PO_(4), Na_(2)HPO_(4)and NaH_(2)PO_(4)) have diverse effects on the morphology and thus the oxygen evolution reaction activity of the formed final catalysts. The resulting NiFe(oxy)hydroxides nanosheets prepared with Na_(2)HPO_(4)demonstrate a low overpotential of 205 m V to achieve a current density of 50 mA/cm^(2) with a Tafel slope down to 30 mV/dec in 1 mol/L KOH, and remain stable for 20 h during stability test.展开更多
To understand mercury (Hg) toxicity in marine fish, we measured Hg accumulation in juvenile Japanese flounder (Paralichthys olivaceus) and assessed the effects on growth and antioxidant responses. After Hg exposu...To understand mercury (Hg) toxicity in marine fish, we measured Hg accumulation in juvenile Japanese flounder (Paralichthys olivaceus) and assessed the effects on growth and antioxidant responses. After Hg exposure (control, 5, 40, and 160 gg/L Hg) for 28 d, fish growth was significantly reduced. The accumulation of Hg in fish was dose-dependent and tissue-specific, with the maximum accumulation in kidney and liver, followed by gills, hone, and muscle. Different antioxidants responded differently to Hg exposure to cope with the induction of lipid peroxidation (LPO), which was also tissue-specific and dose- dependent. As Hg concentration increased, superoxide dismutase (SOD) and catalase (CAT) activities increased significantly, whereas glutathione S-transferase (GST) activity and glutathione (GSH) levels decreased significantly in the gills. SOD and glutathione peroxidase (GPx) activities and the GSH level increased significantly in the liver. SOD activity and GSH levels increased significantly, but CAT activity decreased significantly with an increase in Hg concentration in the kidney. LPO was induced significantly by elevated Hg in the gills and kidney but was least affected in the liver. Therefore, oxidative stress biomarkers in gills were more sensitive than those in the liver and kidney to Hg exposure. Thus, the gills have potential as bioindicators for evaluating Hg toxicity in juvenile flounder.展开更多
In a 10-day aquarium experiment, this investigation examines macrophyte restoration in eutrophic Lake Taihu, the physiological effects of different plant biomass levels and of increasing natural cyanobacterial concent...In a 10-day aquarium experiment, this investigation examines macrophyte restoration in eutrophic Lake Taihu, the physiological effects of different plant biomass levels and of increasing natural cyanobacterial concentrations on a submerged macrophyte, Vallisneria asiatica. Cyanobacterial stress suppressed the superoxide dismutase (SOD) activity of the plant's leaves and induced the catalase (CAT) and peroxidase (POD) activities of its roots. The soluble protein content in V. asiatica decreased with an increase in natural cyanobacterial concentrations, whereas the malonaldehyde (MDA) increased significantly at chlorophyll a (Chl a) concentrations of 222 and 262 μg/L in water. V. asiatica adapted to the stress caused by cyanobacterial concentrations by adjusting its antioxidant defense system to remove the excessive reactive oxygen species when the algal Chl a concentration was 〉109 μg/L. Additionally, high biomass of V. asiatica (2 222 g FW/m^2) can inhibit the reproduction of cyanobacteria more significantly than low biomass (1 111 g FW/m^2). High biomass of V. asiatica increased the oxidative stress in an individual plant when the initial Chl a concentration in the water reached 222 and 262 μg/L, as expressed by the increased MDA in leaves, compared with low biomass of K asiatica. This provides a basis for controlling cyanobacterial concentrations and V. asiatica biomass for the recovery of V. asiatica in eutrophic Lake Taihu.展开更多
Although ferroelectrics have potential applications in photocatalysis due to their highly efficient charge separation, their mechanism of charge separation is still unknown. A ferroelectric Sr0.7Ba0.3Nb2O6 (SBN‐70)...Although ferroelectrics have potential applications in photocatalysis due to their highly efficient charge separation, their mechanism of charge separation is still unknown. A ferroelectric Sr0.7Ba0.3Nb2O6 (SBN‐70) semiconductor with a low ferro‐paraelectric phase transition (65℃) was studied. The photocatalytic activity for H2 production by ferroelectric and paraelectric SBN‐70 was examined. The spontaneous polarization in the ferroelectric phase strongly affected the photocata‐lytic performance and parallel ferroelectric domains significantly promoted photogenerated charge separation to result in better photocatalytic H2 production. This knowledge provides an important basis for the fabrication of ferroelectric photocatalysts with improved charge separation ability.展开更多
In this work, a method is proposed to control silver nanoparticle dimensions produced by laser ablation varying the ablation time and introducing a sonication phase between ablation and the successive deposition on th...In this work, a method is proposed to control silver nanoparticle dimensions produced by laser ablation varying the ablation time and introducing a sonication phase between ablation and the successive deposition on the substrate. The absorption spectra during laser ablation show a main band, which identifies the dimensions of main particles. The appearance of secondary bands indicates the beginning of an aggregation process with the formation of a small concentration of particles which are spheroid in shape. SEM (secondary electron microscope) images of particle produced with different ablation times confirm the results of absorption measurements. X-ray photoelectron spectroscopy and cathodo-luminescence spectroscopy indicate a high reactivity of the nanoparticles deposited on a substrate. They react with oxygen in the air forming an oxide layer which reveals a luminescence in the blue region.展开更多
Objective: To study the oxidative stress and antioxidative response of Cinnamomum camphora seedlings exposed to nitrogen dioxide (NO2) fumigation. Methods: Measurements were made up of the growth, chlorophyll cont...Objective: To study the oxidative stress and antioxidative response of Cinnamomum camphora seedlings exposed to nitrogen dioxide (NO2) fumigation. Methods: Measurements were made up of the growth, chlorophyll content, chlorophyll fluorescence, antioxidant system and lipid peroxidation of one-year-old C. camphora seedlings exposed to NO2 (0.1, 0.5, and 4 μl/L) fumigation in open top chambers over a period of 60 d. Results: After the first 30 d, 0.5 and 4.0 μl/L NO2 showed insignificant effects on the growth of C. camphora seedlings. However, exposure to 0.5 and 4.0 pilL NO2 for 15 d significantly reduced their chlorophyll content (P〈0.05), enhanced their malondialdehyde (MDA) content and superoxide dismutase (SOD) activity (P〈0.05), and also significantly reduced the maximal quantum yield of PSII in the dark [the ratio of variable fluorescence to maximal fluorescence (Fv/Fm)] (P〈0.05). In the latter 30 d, 0.5μl/L NO2 showed a positive effect on the vitality of the seedlings, which was reflected by a recovery in the ratio of Fv/Fm and chlorophyll content, and obviously enhanced growth, SOD activity, ascorbate (AsA) content and glutathione reductase (GR) activity (P〈0.05); 4.0 pilL NO2 then showed a negative effect, indicated by significant reductions in chlorophyll content and the ratio of Fv/Fm, and inhibited growth (P〈0.05). Conclusion: The results suggest adaptation of C. camphora seedlings to 60-d exposure to 0.1 and 0.5 μl/L NO2, but not to 60-d exposure to 4.0 pilL NO2 C. camphora seedlings may protect themselves from injury by strengthening their antioxidant system in response to NO2-induced oxidative stress.展开更多
Acrolein,known as one of the most common reactive carbonyl species,is a toxic small molecule affecting human health in daily life.This study is focused on the scavenging abilities and mechanism of ferulic acid and som...Acrolein,known as one of the most common reactive carbonyl species,is a toxic small molecule affecting human health in daily life.This study is focused on the scavenging abilities and mechanism of ferulic acid and some other phenolic acids against acrolein.Among the 13 phenolic compounds investigated,ferulic acid was found to have the highest efficiency in scavenging acrolein under physiological 8nditions.Ferulic acid remained at(3.04±1.89)%and acrolein remained at(29.51±4.44)%after being incubated with each other for 24 h.The molecular mechanism of the detoxifying process was also studied.Detoxifying products,namely 2-methoxy-4-vinyIphenol(product 21)and 5-(4-hydroxy-3-methoxyphenyl)pent-4-enal(product 22),were identified though nuclear magnetic resonanee(NMR)and gas chromatography-mass spectrometry(GC-MS),after the scavenging process.Ferulic acid showed significant activity in scavenging acrolein under physiological conditions.This study indicates a new method for inhibiting damage from acrolein.展开更多
Objective:To probe into the intervening action of polysaccharides of Zhu Zi Shen(Rhizoma Panacis Majoris)(PZZS) on oxidative stress and hemodynamics in rats with adriamycin-induced chronic congestive heart failure(CHF...Objective:To probe into the intervening action of polysaccharides of Zhu Zi Shen(Rhizoma Panacis Majoris)(PZZS) on oxidative stress and hemodynamics in rats with adriamycin-induced chronic congestive heart failure(CHF).Methods:After SD rats were successfully modeled with adriamycin,they were randomly divided into a normal control group,a model group,a PZZS group,and a captopril group,and were administrated respectively.At the end of experiment,the hemodynamic function,whole heart weight index,and the blood CK,SOD,MDA,NO,NOS were detected;and the myocardial morphological examinations were carried out.Results:Compared with the normal control group,the arterial systolic pressure(SBP),diastolic pressure(DBP),mean arterial pressure(MAP),heart rate(HR),left ventricular systolic peak(LVSP),and left ventricular pressure change rate(dp/dtmax) significantly decreased,and left ventricular end diastolic pressure(LVEDP),whole heart weight index,the blood CK,MDA,NO,NOS significantly increased in the model group.PZZS significantly improved the hemodynamic function,lowered the MDA and NO levels,and decreased the CK and NOS activities in the CHF rats.Conclusion:PZZS can improve the hemodynamic function,and alleviate the oxidative stress reaction in the CHF rat.展开更多
Studies on the chaperone protein α-hemoglobin stabilizing protein (AHSP) reveal that abundant AHSP in erythroid cells en-hance the cells' tolerance to oxidative stress imposed by excess a-hemoglobin in pathologica...Studies on the chaperone protein α-hemoglobin stabilizing protein (AHSP) reveal that abundant AHSP in erythroid cells en-hance the cells' tolerance to oxidative stress imposed by excess a-hemoglobin in pathological conditions. However, the poten-tial intracellular modulation of AHSP expression itself in response to oxidative stress is still unknown. The present study ex-amined the effect and molecular mechanism of STAT3, an oxidative regulator, on the expression of AHSP. AHSP expression increased in K562 cells upon cytokine IL-6-induced STAT3 activation and decreased in STAT3 knock-down K562 cells. Reg-ulation of AHSP in oxidative circumstance was then examined in α-globin-overloaded K562 cells, and real-time PCR showed strengthened expression of both AHSP and STAT3. ChIP analysis showed binding of STAT3 to AHSP promoter and binding was significantly augmented with IL6 stimulation and upon α-globin overexpression. Dual luciferase reporter assays of the wildtype and mutated SB3 element, an IL-6RE site, in the AHSP promoter in K562 cells highlighted the direct regulatory ef-fect of STAT3 on AHSP gene. Finally, direct binding of STAT3 to SB3 site of AHSP promoter was confirmed with EMSA as-says. Our work reveals an adaptive AHSP regulation mediated by the redox-sensitive STAT3 signaling pathway, and provides clues to the therapeutic strategy for AHSP enhancement.展开更多
To explore the role of a novel Obg-like ATPase 1 (OLA1) in cancer metastasis, small interference RNA (siRNA) was used to knockdown the protein, and the cells were subjected to in vitro cell migration and invasion ...To explore the role of a novel Obg-like ATPase 1 (OLA1) in cancer metastasis, small interference RNA (siRNA) was used to knockdown the protein, and the cells were subjected to in vitro cell migration and invasion assays. Knockdown of OLA 1 significantly inhibited cell migration and invasion in breast cancer cell line MDA-MB-231. The knockdown caused no changes in cell growth but affected ROS production. In wound-healing assays, decreased ROS in OLA1-knockdown cells were in situ asso- ciated with the cells' decreased motile morphology. Further, treatment ofN-acetylcysteine, a general ROS scavenger, blunted the motility and invasiveness of MDA-MB-231 cells, similar to the effect of OLAl-knockdown. These results suggest that knock- down of OLA1 inhibits breast cancer cell migration and invasion through a mechanism that involves the modulation of intracellular ROS levels.展开更多
A consistent association has been observed between leukocyte telomere length(LTL)and atherosclerosis,but the mechanisms underlying these associations are still not well understood.Premature biology aging was evident i...A consistent association has been observed between leukocyte telomere length(LTL)and atherosclerosis,but the mechanisms underlying these associations are still not well understood.Premature biology aging was evident in atherosclerotic plaques,characterized by reduced cell proliferation,irreversible growth arrest and apoptosis,and telomere attrition.As atherosclerosis is a state of chronic low-grade inflammation and increased oxidative stress,shortened LTL in patients with atherosclerosis might stem from the two sources,one is an accelerated rate in hematopoietic stem cells(HSCs)replication to replace leukocytes consumed in the inflammatory process,and another is the increase in the loss of telomere repeats per replication.Thus,diminished HSC reserves at birth and age-dependent telomere attrition afterward are mirrored in shortened LTL during the adulthood.In addition,the inter-individual variation of LTL in the general population can be partly explained by genetic factors regulating telomere maintenance and the rate of HSCs replication.Atherosclerosis is an aging-related disease,and practically all humans develop atherosclerosis if they live long enough.Here we overview the potential roles of LTL dynamics in the imbalance between injurious oxidative stress/inflammation and endothelial repair during the pathogenesis of age-related atherosclerosis,and discuss the possibility that preventing accelerated cellular senescence is a potential target in prevention of atherosclerosis.展开更多
Vascular remodeling is a pathological condition with structural changes of blood vessels.Both inside-out and outside-in hypothesis have been put forward to describe mechanisms of vascular remodeling.An integrated mode...Vascular remodeling is a pathological condition with structural changes of blood vessels.Both inside-out and outside-in hypothesis have been put forward to describe mechanisms of vascular remodeling.An integrated model of these two hypotheses emphasizes the importance of immune cells such as monocytes/macrophages,T cells,and dendritic cells.These immune cells are at the center stage to orchestrate cellular proliferation,migration,and interactions of themselves and other vascular cells including endothelial cells(ECs),vascular smooth muscle cells(VSMCs),and fibroblasts.These changes on vascular wall lead to inflammation and oxidative stress that are largely responsible for vascular remodeling.Mineralocorticoid receptor(MR)is a classic nuclear receptor.MR agonist promotes inflammation and oxidative stress and therefore exacerbates vascular remodeling.Conversely,MR antagonists have the opposite effects.MR has direct roles on vascular cells through non-genomic or genomic actions to modulate inflammation and oxidative stress.Recent studies using genetic mouse models have revealed that MR in myeloid cells,VSMCs and ECs all contribute to vascular remodeling.In conclusion,data in the past years have demonstrated that MR is a critical control point in modulating vascular remodeling.Studies will continue to provide evidence with more detailed mechanisms to support this notion.展开更多
文摘Background: The physiological and biochemical demands of intense exercise elicit both muscle-based and systemic responses. The main adaptations to endurance exercise include the correction of electrolyte imbalance, a decrease in glycogen storage and the increase of oxidative stress, intestinal permeability, muscle damage, and systemic inflammatory response. Adaptations to exercise might be influenced by the gut microbiota, which plays an important role in the production, storage, and expenditure of energy obtained from the diet as well as in inflammation,redox reactions, and hydration status.Methods: A systematic and comprehensive search of electronic databases, including MEDLINE, Scopus, Clinical Trials.gov, Science Direct,Springer Link, and EMBASE was done. The search process was completed using the keywords: "endurance", "exercise", "immune response","microbiota", "nutrition", and "probiotics".Results: Reviewed literature supports the hypothesis that intestinal microbiota might be able to provide a measureable, effective marker of an athlete's immune function and that microbial composition analysis might also be sensitive enough to detect exercise-induced stress and metabolic disorders. The review also supports the hypothesis that modifying the microbiota through the use of probiotics could be an important therapeutic tool to improve athletes' overall general health, performance, and energy availability while controlling inflammation and redox levels.Conclusion: The present review provides a comprehensive overview of how gut microbiota may have a key role in controlling the oxidative stress and inflammatory responses as well as improving metabolism and energy expenditure during intense exercise.
基金supported by the National Natural Science Foundation of China (Nos. 11904411, 52072308)the Fundamental Research Funds for the Central Universities, China (Nos. 3102021MS0404, 3102019JC001)。
文摘NiFe(oxy)hydroxides nanosheets were synthesized on nickel foams via co-precipitation and electrochemical activation. It is found that the phosphate precursors(Na_(3)PO_(4), Na_(2)HPO_(4)and NaH_(2)PO_(4)) have diverse effects on the morphology and thus the oxygen evolution reaction activity of the formed final catalysts. The resulting NiFe(oxy)hydroxides nanosheets prepared with Na_(2)HPO_(4)demonstrate a low overpotential of 205 m V to achieve a current density of 50 mA/cm^(2) with a Tafel slope down to 30 mV/dec in 1 mol/L KOH, and remain stable for 20 h during stability test.
基金Supported by the National Natural Science Foundation of China for Creative Research Groups (No. 41121064)the National High Technology Research and Development Program of China (863 Program) (No.2009AA09Z401)+1 种基金the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q07-02)the Public Interest Research Program in Marine Industry from the State Oceanic Administration of China (No. 200905019)
文摘To understand mercury (Hg) toxicity in marine fish, we measured Hg accumulation in juvenile Japanese flounder (Paralichthys olivaceus) and assessed the effects on growth and antioxidant responses. After Hg exposure (control, 5, 40, and 160 gg/L Hg) for 28 d, fish growth was significantly reduced. The accumulation of Hg in fish was dose-dependent and tissue-specific, with the maximum accumulation in kidney and liver, followed by gills, hone, and muscle. Different antioxidants responded differently to Hg exposure to cope with the induction of lipid peroxidation (LPO), which was also tissue-specific and dose- dependent. As Hg concentration increased, superoxide dismutase (SOD) and catalase (CAT) activities increased significantly, whereas glutathione S-transferase (GST) activity and glutathione (GSH) levels decreased significantly in the gills. SOD and glutathione peroxidase (GPx) activities and the GSH level increased significantly in the liver. SOD activity and GSH levels increased significantly, but CAT activity decreased significantly with an increase in Hg concentration in the kidney. LPO was induced significantly by elevated Hg in the gills and kidney but was least affected in the liver. Therefore, oxidative stress biomarkers in gills were more sensitive than those in the liver and kidney to Hg exposure. Thus, the gills have potential as bioindicators for evaluating Hg toxicity in juvenile flounder.
基金Supported by the Research Institute for East Asia Environments of Kyushu University and Mitsubishi Corporation in Japan
文摘In a 10-day aquarium experiment, this investigation examines macrophyte restoration in eutrophic Lake Taihu, the physiological effects of different plant biomass levels and of increasing natural cyanobacterial concentrations on a submerged macrophyte, Vallisneria asiatica. Cyanobacterial stress suppressed the superoxide dismutase (SOD) activity of the plant's leaves and induced the catalase (CAT) and peroxidase (POD) activities of its roots. The soluble protein content in V. asiatica decreased with an increase in natural cyanobacterial concentrations, whereas the malonaldehyde (MDA) increased significantly at chlorophyll a (Chl a) concentrations of 222 and 262 μg/L in water. V. asiatica adapted to the stress caused by cyanobacterial concentrations by adjusting its antioxidant defense system to remove the excessive reactive oxygen species when the algal Chl a concentration was 〉109 μg/L. Additionally, high biomass of V. asiatica (2 222 g FW/m^2) can inhibit the reproduction of cyanobacteria more significantly than low biomass (1 111 g FW/m^2). High biomass of V. asiatica increased the oxidative stress in an individual plant when the initial Chl a concentration in the water reached 222 and 262 μg/L, as expressed by the increased MDA in leaves, compared with low biomass of K asiatica. This provides a basis for controlling cyanobacterial concentrations and V. asiatica biomass for the recovery of V. asiatica in eutrophic Lake Taihu.
基金supported by the National Natural Science Foundation of China (211373213,21373212)~~
文摘Although ferroelectrics have potential applications in photocatalysis due to their highly efficient charge separation, their mechanism of charge separation is still unknown. A ferroelectric Sr0.7Ba0.3Nb2O6 (SBN‐70) semiconductor with a low ferro‐paraelectric phase transition (65℃) was studied. The photocatalytic activity for H2 production by ferroelectric and paraelectric SBN‐70 was examined. The spontaneous polarization in the ferroelectric phase strongly affected the photocata‐lytic performance and parallel ferroelectric domains significantly promoted photogenerated charge separation to result in better photocatalytic H2 production. This knowledge provides an important basis for the fabrication of ferroelectric photocatalysts with improved charge separation ability.
文摘In this work, a method is proposed to control silver nanoparticle dimensions produced by laser ablation varying the ablation time and introducing a sonication phase between ablation and the successive deposition on the substrate. The absorption spectra during laser ablation show a main band, which identifies the dimensions of main particles. The appearance of secondary bands indicates the beginning of an aggregation process with the formation of a small concentration of particles which are spheroid in shape. SEM (secondary electron microscope) images of particle produced with different ablation times confirm the results of absorption measurements. X-ray photoelectron spectroscopy and cathodo-luminescence spectroscopy indicate a high reactivity of the nanoparticles deposited on a substrate. They react with oxygen in the air forming an oxide layer which reveals a luminescence in the blue region.
基金Project supported by Zhejiang Keystone Projects (No.2005C22056)the Zhejiang Provincial Natural Science Foundation of China (No.Y5080011)
文摘Objective: To study the oxidative stress and antioxidative response of Cinnamomum camphora seedlings exposed to nitrogen dioxide (NO2) fumigation. Methods: Measurements were made up of the growth, chlorophyll content, chlorophyll fluorescence, antioxidant system and lipid peroxidation of one-year-old C. camphora seedlings exposed to NO2 (0.1, 0.5, and 4 μl/L) fumigation in open top chambers over a period of 60 d. Results: After the first 30 d, 0.5 and 4.0 μl/L NO2 showed insignificant effects on the growth of C. camphora seedlings. However, exposure to 0.5 and 4.0 pilL NO2 for 15 d significantly reduced their chlorophyll content (P〈0.05), enhanced their malondialdehyde (MDA) content and superoxide dismutase (SOD) activity (P〈0.05), and also significantly reduced the maximal quantum yield of PSII in the dark [the ratio of variable fluorescence to maximal fluorescence (Fv/Fm)] (P〈0.05). In the latter 30 d, 0.5μl/L NO2 showed a positive effect on the vitality of the seedlings, which was reflected by a recovery in the ratio of Fv/Fm and chlorophyll content, and obviously enhanced growth, SOD activity, ascorbate (AsA) content and glutathione reductase (GR) activity (P〈0.05); 4.0 pilL NO2 then showed a negative effect, indicated by significant reductions in chlorophyll content and the ratio of Fv/Fm, and inhibited growth (P〈0.05). Conclusion: The results suggest adaptation of C. camphora seedlings to 60-d exposure to 0.1 and 0.5 μl/L NO2, but not to 60-d exposure to 4.0 pilL NO2 C. camphora seedlings may protect themselves from injury by strengthening their antioxidant system in response to NO2-induced oxidative stress.
基金Project supported by the National Natural Science Foundation of China(Nos.21327010 and 21372199)
文摘Acrolein,known as one of the most common reactive carbonyl species,is a toxic small molecule affecting human health in daily life.This study is focused on the scavenging abilities and mechanism of ferulic acid and some other phenolic acids against acrolein.Among the 13 phenolic compounds investigated,ferulic acid was found to have the highest efficiency in scavenging acrolein under physiological 8nditions.Ferulic acid remained at(3.04±1.89)%and acrolein remained at(29.51±4.44)%after being incubated with each other for 24 h.The molecular mechanism of the detoxifying process was also studied.Detoxifying products,namely 2-methoxy-4-vinyIphenol(product 21)and 5-(4-hydroxy-3-methoxyphenyl)pent-4-enal(product 22),were identified though nuclear magnetic resonanee(NMR)and gas chromatography-mass spectrometry(GC-MS),after the scavenging process.Ferulic acid showed significant activity in scavenging acrolein under physiological conditions.This study indicates a new method for inhibiting damage from acrolein.
文摘Objective:To probe into the intervening action of polysaccharides of Zhu Zi Shen(Rhizoma Panacis Majoris)(PZZS) on oxidative stress and hemodynamics in rats with adriamycin-induced chronic congestive heart failure(CHF).Methods:After SD rats were successfully modeled with adriamycin,they were randomly divided into a normal control group,a model group,a PZZS group,and a captopril group,and were administrated respectively.At the end of experiment,the hemodynamic function,whole heart weight index,and the blood CK,SOD,MDA,NO,NOS were detected;and the myocardial morphological examinations were carried out.Results:Compared with the normal control group,the arterial systolic pressure(SBP),diastolic pressure(DBP),mean arterial pressure(MAP),heart rate(HR),left ventricular systolic peak(LVSP),and left ventricular pressure change rate(dp/dtmax) significantly decreased,and left ventricular end diastolic pressure(LVEDP),whole heart weight index,the blood CK,MDA,NO,NOS significantly increased in the model group.PZZS significantly improved the hemodynamic function,lowered the MDA and NO levels,and decreased the CK and NOS activities in the CHF rats.Conclusion:PZZS can improve the hemodynamic function,and alleviate the oxidative stress reaction in the CHF rat.
基金supported by the National Natural Science Foundation of China(31030026,31021091)the National Basic Research Program of China(2011CB965203,2011CB964803)
文摘Studies on the chaperone protein α-hemoglobin stabilizing protein (AHSP) reveal that abundant AHSP in erythroid cells en-hance the cells' tolerance to oxidative stress imposed by excess a-hemoglobin in pathological conditions. However, the poten-tial intracellular modulation of AHSP expression itself in response to oxidative stress is still unknown. The present study ex-amined the effect and molecular mechanism of STAT3, an oxidative regulator, on the expression of AHSP. AHSP expression increased in K562 cells upon cytokine IL-6-induced STAT3 activation and decreased in STAT3 knock-down K562 cells. Reg-ulation of AHSP in oxidative circumstance was then examined in α-globin-overloaded K562 cells, and real-time PCR showed strengthened expression of both AHSP and STAT3. ChIP analysis showed binding of STAT3 to AHSP promoter and binding was significantly augmented with IL6 stimulation and upon α-globin overexpression. Dual luciferase reporter assays of the wildtype and mutated SB3 element, an IL-6RE site, in the AHSP promoter in K562 cells highlighted the direct regulatory ef-fect of STAT3 on AHSP gene. Finally, direct binding of STAT3 to SB3 site of AHSP promoter was confirmed with EMSA as-says. Our work reveals an adaptive AHSP regulation mediated by the redox-sensitive STAT3 signaling pathway, and provides clues to the therapeutic strategy for AHSP enhancement.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB518707) the Methodist Hospital Research Institute, USA
文摘To explore the role of a novel Obg-like ATPase 1 (OLA1) in cancer metastasis, small interference RNA (siRNA) was used to knockdown the protein, and the cells were subjected to in vitro cell migration and invasion assays. Knockdown of OLA 1 significantly inhibited cell migration and invasion in breast cancer cell line MDA-MB-231. The knockdown caused no changes in cell growth but affected ROS production. In wound-healing assays, decreased ROS in OLA1-knockdown cells were in situ asso- ciated with the cells' decreased motile morphology. Further, treatment ofN-acetylcysteine, a general ROS scavenger, blunted the motility and invasiveness of MDA-MB-231 cells, similar to the effect of OLAl-knockdown. These results suggest that knock- down of OLA1 inhibits breast cancer cell migration and invasion through a mechanism that involves the modulation of intracellular ROS levels.
文摘A consistent association has been observed between leukocyte telomere length(LTL)and atherosclerosis,but the mechanisms underlying these associations are still not well understood.Premature biology aging was evident in atherosclerotic plaques,characterized by reduced cell proliferation,irreversible growth arrest and apoptosis,and telomere attrition.As atherosclerosis is a state of chronic low-grade inflammation and increased oxidative stress,shortened LTL in patients with atherosclerosis might stem from the two sources,one is an accelerated rate in hematopoietic stem cells(HSCs)replication to replace leukocytes consumed in the inflammatory process,and another is the increase in the loss of telomere repeats per replication.Thus,diminished HSC reserves at birth and age-dependent telomere attrition afterward are mirrored in shortened LTL during the adulthood.In addition,the inter-individual variation of LTL in the general population can be partly explained by genetic factors regulating telomere maintenance and the rate of HSCs replication.Atherosclerosis is an aging-related disease,and practically all humans develop atherosclerosis if they live long enough.Here we overview the potential roles of LTL dynamics in the imbalance between injurious oxidative stress/inflammation and endothelial repair during the pathogenesis of age-related atherosclerosis,and discuss the possibility that preventing accelerated cellular senescence is a potential target in prevention of atherosclerosis.
基金supported by grants from the One Hundred Talents Program of the Chinese Academy of Sciences(2012OHTP06)the National Basic Research Program of China(2012CB524900)the National Natural Science Foundation of China(91339110,31371153,31171133)
文摘Vascular remodeling is a pathological condition with structural changes of blood vessels.Both inside-out and outside-in hypothesis have been put forward to describe mechanisms of vascular remodeling.An integrated model of these two hypotheses emphasizes the importance of immune cells such as monocytes/macrophages,T cells,and dendritic cells.These immune cells are at the center stage to orchestrate cellular proliferation,migration,and interactions of themselves and other vascular cells including endothelial cells(ECs),vascular smooth muscle cells(VSMCs),and fibroblasts.These changes on vascular wall lead to inflammation and oxidative stress that are largely responsible for vascular remodeling.Mineralocorticoid receptor(MR)is a classic nuclear receptor.MR agonist promotes inflammation and oxidative stress and therefore exacerbates vascular remodeling.Conversely,MR antagonists have the opposite effects.MR has direct roles on vascular cells through non-genomic or genomic actions to modulate inflammation and oxidative stress.Recent studies using genetic mouse models have revealed that MR in myeloid cells,VSMCs and ECs all contribute to vascular remodeling.In conclusion,data in the past years have demonstrated that MR is a critical control point in modulating vascular remodeling.Studies will continue to provide evidence with more detailed mechanisms to support this notion.