Reactive nitrogen(Nr)emission from soils,e.g.,nitrous acid(HONO)and nitric oxide(NO),is a key process of the global nitrogen(N)cycle and has significant implications for atmospheric chemistry.To understand the underly...Reactive nitrogen(Nr)emission from soils,e.g.,nitrous acid(HONO)and nitric oxide(NO),is a key process of the global nitrogen(N)cycle and has significant implications for atmospheric chemistry.To understand the underlying mechanisms of soil Nr emissions,air-dried or oven-dried soils are commonly used in the laboratory.To date,few studies have compared the effects of different drying methods on soil Nr gas fluxes and N fractions.Here,the authors studied soil water content,pH,(in)organic N content,and Nr gas fluxes of air-dried,freeze-dried,oven-dried,and fresh soils from different land-use types.The results showed that the soil pH of air-dried and oven-dried samples was significantly lower compared with fresh soil from farmland and grassland,but higher compared with forest soil.The difference in soil pH between freeze-dried and fresh soil(mean±standard deviation:0.52±0.31)was the lowest.In general,all drying methods increased the soil NH4+-N,NO3−-N,and dissolved organic N contents compared with fresh soil(P<0.05).The maximum HONO and NO flux and total emissions during a full wetting–drying cycle of fresh soil were also increased by air-drying and oven-drying(P<0.001),but comparable with freeze-dried soil(P>0.2).In conclusion,all drying methods should be considered for use in studies on the land–atmosphere interface and biogeochemical N cycling,whereas the freeze-drying method might be better for studies involving the measurement of soil Nr gas fluxes.展开更多
A novel anaerobic reactor, jet biogas inter-loop anaerobic fluidized bed (JBILAFB), was designed and constructed. The start-up and performance of the reactor was investigated in the Process. of .artificial glucose w...A novel anaerobic reactor, jet biogas inter-loop anaerobic fluidized bed (JBILAFB), was designed and constructed. The start-up and performance of the reactor was investigated in the Process. of .artificial glucose wastewater treatment. With the wastewater recycle ratio of 2.5 : 1, the recycled wastewater with biogas could mix sludge and wastewater in the JBILAFB reactor completely. The start-up of the JBILAFB reactor could be completed in less than 70 d through maintenance of hydraulic retention time (HR^I") and stepwise increase of feed total organic carbon (TOC) concentration. After the start-up, with the volumetric TOC loadings of 14.3 kg·m ^-3·d^-1, the TOC removal ratio, the effluent pH, and the volatile fatty acids (VFA)/alkalinity of the JBILAFB reactor were more than 80%, close to 7.0 and less than 0.4, respectively. Moreover, CH4 was produced at more than 70% of the theoretical value, The reactor exhibited high stability under the condition of high volumetric TOC loading. Sludge granules in the JBILAFB reactor were developed during the start-up and their sizes were enlarged with the stepwise increase of volumetric TOC loadings from 0.8 kg.m^-3.d ^-1 to 14.3 kg.m^-3.d^-1. Granules, an offwhite color and a similar spherical shape, were mainly comprised of global-like bacteria. These had good methanogenic activity and settleability, which were formed probably through adhesion of the bacteria. Some inorganic metal compounds such as Fe, Ca, Mg, Al, etc. were advantageous to the formation of the granules.展开更多
The cyclic oxidation behavior of Fe-9Cr-1Mo steel (9Cr-1Mo) in 10%H2O+90%Ar (volume fraction) atmosphere at 600, 650 and 700 ℃ for various time was studied. The oxidation mechanism of 9Cr-1Mo steel in 10%H2O+90%Ar at...The cyclic oxidation behavior of Fe-9Cr-1Mo steel (9Cr-1Mo) in 10%H2O+90%Ar (volume fraction) atmosphere at 600, 650 and 700 ℃ for various time was studied. The oxidation mechanism of 9Cr-1Mo steel in 10%H2O+90%Ar atmosphere was discussed. The thermal stress was evaluated in two oxide layers to illustrate the spallation of the oxide layer. The experimental results indicate that there exists a duplex oxide scale with an outer layer of Fe2O3 and an inner layer of mixed (Fe, Cr)3O4 formed on 9Cr-1Mo steel during cyclic oxidation. Some cracks generated in both inner and outer oxide layers. Parts of oxide scales spalled from substrate during the cyclic oxidation. A higher tensile stress in the oxide layer is formed at the early oxidation stage than at the later oxidation stage during heating. This tensile stress results in the formation of cracks in the oxide layer.展开更多
A bottoming cycle system based on CO2 Brayton cycle is proposed to recover the engine exhaust heat. Its performance is compared with the conventional air Brayton cycle under five typical engine conditions. The results...A bottoming cycle system based on CO2 Brayton cycle is proposed to recover the engine exhaust heat. Its performance is compared with the conventional air Brayton cycle under five typical engine conditions. The results show that CO2 Brayton cycle proves to be superior to the air Brayton cycle in terms of the system net output power, thermal efficiency and recovery efficiency. In most cases, the recovery efficiency of CO2 Brayton cycle can be higher than 9% and the system has a better performance at the engine's high operating load, The thermal efficiency can be as large as 24.83% under 100% olaerating load, accordingly, the net outnut nower of 14.86 kW in nhtnined展开更多
Brayton power cycles for fusion reactors have been investigated, using Helium in classical configurations and CO2 in a recompression layout. Thermal sources from the reactor have strongly constrained the cycle configu...Brayton power cycles for fusion reactors have been investigated, using Helium in classical configurations and CO2 in a recompression layout. Thermal sources from the reactor have strongly constrained the cycle configurations, hindering use of a recuperator in Helium cycles and conditioning the outlet turbine temperature in CO2 ones. In both cycles, it is possible to take advantage of the exhaust thermal energy by coupling the Brayton to a Rankine cycle, with an organic fluid in the helium case (iso-butane has been investigated) and steam in the CO2 case. The highest efficiency achieved with Helium cycle is 38.5% using Organic Rankine Cycle and 32.6% with Helium alone. The efficiency changes from 46.7% using Rankine cycle to 41% with CO2 alone. The Helium cycle is highly sensitive to turbine efficiency and in a moderate way to compressor efficiency and pressure drops, being nearly insensitive to thermal effectiveness in heat exchangers. On the other hand, CO2 is nearly insensitive to all the parameters.展开更多
This paper is focused on the cascade refrigeration cycle using natural refrigerant CO 2-NH 3. The properties of refrigerants CO 2 and NH 3 are introduced and analyzed.CO 2 has the advantage in low stage of cascade ref...This paper is focused on the cascade refrigeration cycle using natural refrigerant CO 2-NH 3. The properties of refrigerants CO 2 and NH 3 are introduced and analyzed.CO 2 has the advantage in low stage of cascade refrigeration cycle due to its good characteristics and properties. The thermodynamic analysis results of the CO 2-NH 3 cascade refrigeration cycle demonstrates that the cycle has an optimum condensation temperature of low stage and also has an optimum flow rate ratio.By comparing with the R13-R22 and NH 3-NH 3 cascade refrigeration cycles, the mass flow rate ratio of CO 2-NH 3 is larger than those of R13-R22 and NH 3-NH 3, the theoretical COP of CO 2-NH 3 cascade refrigeration cycle is larger than that of the R13-R22 cascade cycle and smaller than that of the NH 3-NH 3 cascade cycle. But the real COP of CO 2-NH 3 cascade cycle will be higher than those of R13-R22 and NH 3-NH 3 because the specific volume of CO 2 at low temperature does not change much and its dynamic viscosity is also small.展开更多
One of the main challenges of biogas and syngas use as fuel in hybrid solid oxide fuel cell (SOFC) cycles is the variable nature of their composition, which may cause significant changes in plant performance. On the...One of the main challenges of biogas and syngas use as fuel in hybrid solid oxide fuel cell (SOFC) cycles is the variable nature of their composition, which may cause significant changes in plant performance. On the other hand, hydrogen is one of the main components in some types of gasified biomass and syngas. Therefore, it is vital to investigate the influences of hydrogen fraction in inlet fuel on the cycle performance. In this work, a steady-state simulation of a hybrid tubular SOFC-gas turbine (GT) cycle is first presented with two configurations: system with and without anode exhaust recirculation. Then, the results of the model when fueled by syngas, biofuel, and gasified biomass are analyzed, and significant dependency of system operational parameters on the inlet fuel composition are investigated. The analysis of impacts of hydrogen concentration in the inlet fuel on the performance of a hybrid tubular SOFC and gas turbine cycle was carried out. The simulation results were considered when the system was fueled by pure methane as a reference case. Then, the performance of the hybrid SOFC-GT system when methane was partially replaced by H2 from a concentration of 0% to 95% with an increment of 5% at each step was investigated. The system performance was monitored by investigating parameters like temperature and flow rate of streams in different locations of the cycle; SOFC and system thermal efficiency; SOFC, GT, and cycle net and specific work; air to fuel ratio; as well as air and fuel mass flow rate. The results of the sensitivity analysis demonstrate that hydrogen concentration has significant effects on the system operational parameters, such as efficiency and specific work.展开更多
The construction of transition metal-based catalysts with high activity and stability has been widely regarded as a promising method to replace the precious metal Pt for oxygen reduction reaction(ORR).Herein,we synthe...The construction of transition metal-based catalysts with high activity and stability has been widely regarded as a promising method to replace the precious metal Pt for oxygen reduction reaction(ORR).Herein,we synthesized CoFe alloy nanoparticle-embedded N-doped graphitic carbon(CoFe/NC)nanostructures as ORR electrocatalysts.The ZIF-67(zeolitic imidazolate framework,ZIF)nanocubes were first synthesized,followed by an introduction of Fe2+ions to form CoFe-ZIF precursors via a simple ion-exchange route.Subsequently,the CoFe/NC composites were synthesized through a facile pyrolysis strategy.The ORR activity and the contents of cobalt and iron could be effectively adjusted by controlling the solution concentration of Fe2+ions used for the ion exchange and the pyrolysis temperature.The CoFe/NC-0.2-900 composite(synthesized with 0.2 mmol of FeSO4·7H2O at a pyrolysis temperature of 900℃)exhibited ORR activity that was superior to the other samples owing to a synergistic effect of the bimetal,especially considering the extremely high limiting current density of 6.4 mA cm^-2 compared with that of Pt/C(5.1 mA cm^-2).Rechargeable Zn-air batteries were assembled employing CoFe/NC-0.2-900 and NiFeP/NF(NiFeP supported on nickel foam(NF))as the catalysts for the discharging and charging processes,respectively,The above materials achieved reduced discharging and charging platforms,high power density,and prolonged cycling stability compared with conventional Pt/C+RuO2/C catalysts.展开更多
基金This work was sponsored by the National Natural Science Foundation of China[grant numbers 41807449,41761144062,and 41730646]the Shanghai Pujiang Program[grant number 18PJ1403500]the Fundamental Research Funds for the Central Universities.
文摘Reactive nitrogen(Nr)emission from soils,e.g.,nitrous acid(HONO)and nitric oxide(NO),is a key process of the global nitrogen(N)cycle and has significant implications for atmospheric chemistry.To understand the underlying mechanisms of soil Nr emissions,air-dried or oven-dried soils are commonly used in the laboratory.To date,few studies have compared the effects of different drying methods on soil Nr gas fluxes and N fractions.Here,the authors studied soil water content,pH,(in)organic N content,and Nr gas fluxes of air-dried,freeze-dried,oven-dried,and fresh soils from different land-use types.The results showed that the soil pH of air-dried and oven-dried samples was significantly lower compared with fresh soil from farmland and grassland,but higher compared with forest soil.The difference in soil pH between freeze-dried and fresh soil(mean±standard deviation:0.52±0.31)was the lowest.In general,all drying methods increased the soil NH4+-N,NO3−-N,and dissolved organic N contents compared with fresh soil(P<0.05).The maximum HONO and NO flux and total emissions during a full wetting–drying cycle of fresh soil were also increased by air-drying and oven-drying(P<0.001),but comparable with freeze-dried soil(P>0.2).In conclusion,all drying methods should be considered for use in studies on the land–atmosphere interface and biogeochemical N cycling,whereas the freeze-drying method might be better for studies involving the measurement of soil Nr gas fluxes.
基金Supported by the National Natural Science Foundation of China (No.50278036), the Natural Science Foundation of Guangdong Province (No.04105951) and the National High Technology Research and Development Program of China (No.2006AA06Z378).
文摘A novel anaerobic reactor, jet biogas inter-loop anaerobic fluidized bed (JBILAFB), was designed and constructed. The start-up and performance of the reactor was investigated in the Process. of .artificial glucose wastewater treatment. With the wastewater recycle ratio of 2.5 : 1, the recycled wastewater with biogas could mix sludge and wastewater in the JBILAFB reactor completely. The start-up of the JBILAFB reactor could be completed in less than 70 d through maintenance of hydraulic retention time (HR^I") and stepwise increase of feed total organic carbon (TOC) concentration. After the start-up, with the volumetric TOC loadings of 14.3 kg·m ^-3·d^-1, the TOC removal ratio, the effluent pH, and the volatile fatty acids (VFA)/alkalinity of the JBILAFB reactor were more than 80%, close to 7.0 and less than 0.4, respectively. Moreover, CH4 was produced at more than 70% of the theoretical value, The reactor exhibited high stability under the condition of high volumetric TOC loading. Sludge granules in the JBILAFB reactor were developed during the start-up and their sizes were enlarged with the stepwise increase of volumetric TOC loadings from 0.8 kg.m^-3.d ^-1 to 14.3 kg.m^-3.d^-1. Granules, an offwhite color and a similar spherical shape, were mainly comprised of global-like bacteria. These had good methanogenic activity and settleability, which were formed probably through adhesion of the bacteria. Some inorganic metal compounds such as Fe, Ca, Mg, Al, etc. were advantageous to the formation of the granules.
基金Project(2006-8) supported by the Huadian International Corporation Limited
文摘The cyclic oxidation behavior of Fe-9Cr-1Mo steel (9Cr-1Mo) in 10%H2O+90%Ar (volume fraction) atmosphere at 600, 650 and 700 ℃ for various time was studied. The oxidation mechanism of 9Cr-1Mo steel in 10%H2O+90%Ar atmosphere was discussed. The thermal stress was evaluated in two oxide layers to illustrate the spallation of the oxide layer. The experimental results indicate that there exists a duplex oxide scale with an outer layer of Fe2O3 and an inner layer of mixed (Fe, Cr)3O4 formed on 9Cr-1Mo steel during cyclic oxidation. Some cracks generated in both inner and outer oxide layers. Parts of oxide scales spalled from substrate during the cyclic oxidation. A higher tensile stress in the oxide layer is formed at the early oxidation stage than at the later oxidation stage during heating. This tensile stress results in the formation of cracks in the oxide layer.
基金Supported by the National Basic Research Program of China("973"Program,No.2011CB707201)the National Natural Science Foundation of China(No.51206117)
文摘A bottoming cycle system based on CO2 Brayton cycle is proposed to recover the engine exhaust heat. Its performance is compared with the conventional air Brayton cycle under five typical engine conditions. The results show that CO2 Brayton cycle proves to be superior to the air Brayton cycle in terms of the system net output power, thermal efficiency and recovery efficiency. In most cases, the recovery efficiency of CO2 Brayton cycle can be higher than 9% and the system has a better performance at the engine's high operating load, The thermal efficiency can be as large as 24.83% under 100% olaerating load, accordingly, the net outnut nower of 14.86 kW in nhtnined
文摘Brayton power cycles for fusion reactors have been investigated, using Helium in classical configurations and CO2 in a recompression layout. Thermal sources from the reactor have strongly constrained the cycle configurations, hindering use of a recuperator in Helium cycles and conditioning the outlet turbine temperature in CO2 ones. In both cycles, it is possible to take advantage of the exhaust thermal energy by coupling the Brayton to a Rankine cycle, with an organic fluid in the helium case (iso-butane has been investigated) and steam in the CO2 case. The highest efficiency achieved with Helium cycle is 38.5% using Organic Rankine Cycle and 32.6% with Helium alone. The efficiency changes from 46.7% using Rankine cycle to 41% with CO2 alone. The Helium cycle is highly sensitive to turbine efficiency and in a moderate way to compressor efficiency and pressure drops, being nearly insensitive to thermal effectiveness in heat exchangers. On the other hand, CO2 is nearly insensitive to all the parameters.
文摘This paper is focused on the cascade refrigeration cycle using natural refrigerant CO 2-NH 3. The properties of refrigerants CO 2 and NH 3 are introduced and analyzed.CO 2 has the advantage in low stage of cascade refrigeration cycle due to its good characteristics and properties. The thermodynamic analysis results of the CO 2-NH 3 cascade refrigeration cycle demonstrates that the cycle has an optimum condensation temperature of low stage and also has an optimum flow rate ratio.By comparing with the R13-R22 and NH 3-NH 3 cascade refrigeration cycles, the mass flow rate ratio of CO 2-NH 3 is larger than those of R13-R22 and NH 3-NH 3, the theoretical COP of CO 2-NH 3 cascade refrigeration cycle is larger than that of the R13-R22 cascade cycle and smaller than that of the NH 3-NH 3 cascade cycle. But the real COP of CO 2-NH 3 cascade cycle will be higher than those of R13-R22 and NH 3-NH 3 because the specific volume of CO 2 at low temperature does not change much and its dynamic viscosity is also small.
文摘One of the main challenges of biogas and syngas use as fuel in hybrid solid oxide fuel cell (SOFC) cycles is the variable nature of their composition, which may cause significant changes in plant performance. On the other hand, hydrogen is one of the main components in some types of gasified biomass and syngas. Therefore, it is vital to investigate the influences of hydrogen fraction in inlet fuel on the cycle performance. In this work, a steady-state simulation of a hybrid tubular SOFC-gas turbine (GT) cycle is first presented with two configurations: system with and without anode exhaust recirculation. Then, the results of the model when fueled by syngas, biofuel, and gasified biomass are analyzed, and significant dependency of system operational parameters on the inlet fuel composition are investigated. The analysis of impacts of hydrogen concentration in the inlet fuel on the performance of a hybrid tubular SOFC and gas turbine cycle was carried out. The simulation results were considered when the system was fueled by pure methane as a reference case. Then, the performance of the hybrid SOFC-GT system when methane was partially replaced by H2 from a concentration of 0% to 95% with an increment of 5% at each step was investigated. The system performance was monitored by investigating parameters like temperature and flow rate of streams in different locations of the cycle; SOFC and system thermal efficiency; SOFC, GT, and cycle net and specific work; air to fuel ratio; as well as air and fuel mass flow rate. The results of the sensitivity analysis demonstrate that hydrogen concentration has significant effects on the system operational parameters, such as efficiency and specific work.
基金the support of the National Natural Science Foundation of China (21771059, 21631004 and 21571054)the Natural Science Foundation of Heilongjiang Province (JJ2019YX0122)+1 种基金Heilongjiang Provincial Postdoctoral Science Foundation (LBH-Q16194)the excellent Youth Foundation of Heilongjiang University (JC201706)
文摘The construction of transition metal-based catalysts with high activity and stability has been widely regarded as a promising method to replace the precious metal Pt for oxygen reduction reaction(ORR).Herein,we synthesized CoFe alloy nanoparticle-embedded N-doped graphitic carbon(CoFe/NC)nanostructures as ORR electrocatalysts.The ZIF-67(zeolitic imidazolate framework,ZIF)nanocubes were first synthesized,followed by an introduction of Fe2+ions to form CoFe-ZIF precursors via a simple ion-exchange route.Subsequently,the CoFe/NC composites were synthesized through a facile pyrolysis strategy.The ORR activity and the contents of cobalt and iron could be effectively adjusted by controlling the solution concentration of Fe2+ions used for the ion exchange and the pyrolysis temperature.The CoFe/NC-0.2-900 composite(synthesized with 0.2 mmol of FeSO4·7H2O at a pyrolysis temperature of 900℃)exhibited ORR activity that was superior to the other samples owing to a synergistic effect of the bimetal,especially considering the extremely high limiting current density of 6.4 mA cm^-2 compared with that of Pt/C(5.1 mA cm^-2).Rechargeable Zn-air batteries were assembled employing CoFe/NC-0.2-900 and NiFeP/NF(NiFeP supported on nickel foam(NF))as the catalysts for the discharging and charging processes,respectively,The above materials achieved reduced discharging and charging platforms,high power density,and prolonged cycling stability compared with conventional Pt/C+RuO2/C catalysts.