As one of the regions with intensive agriculture and rapid economic development in China,North China also has a high nitrogen(N)deposition.This study characterized the spatial pattern of N deposition in North China,co...As one of the regions with intensive agriculture and rapid economic development in China,North China also has a high nitrogen(N)deposition.This study characterized the spatial pattern of N deposition in North China,combining the tropospheric columns from satellite measurements and the simulated profiles from an atmospheric chemistry transport model.The total N deposition fluxes ranged from 16.3 to 106.5 kg N ha−1 yr−1,with an average of 54.5±17.2 kg N ha−1 yr−1.The high values were concentrated in urban and farmland areas,while low values were found in forests and grasslands with less human activities.Of the total N deposition,36%was deposited via precipitation,12%was deposited through dry particulate deposition,and the remaining 52%was comprised of dry gaseous deposition.For the seasonal variation of dry deposition,gaseous HNO3 and particulate NO3−were higher in winter and autumn,but lower in spring and summer.In contrast,gaseous NH3 and particulate NH4+were higher in spring and summer,but lower in winter and autumn.This is possibly caused by the seasonal differences in emission intensity between NOx and NH3 emission sources.The gaseous NO2 deposition did not show strong seasonal variation.The wet deposition was mainly affected by precipitation,with high values in summer and low values in winter.This research provides an objective spatial perspective and insight into the total N deposition in North China.展开更多
Evaporating bubble column reactor (EBCR) is a kind of aerated reactor in which the reaction heat is removed by the evaporation of volatile reaction mixture. In this paper, a mathematical model that accounts for the ga...Evaporating bubble column reactor (EBCR) is a kind of aerated reactor in which the reaction heat is removed by the evaporation of volatile reaction mixture. In this paper, a mathematical model that accounts for the gas-liquid exothermic reaction and axial dispersions of both gas and liquid phase is employed to study the performance of EBCR for the process of p-xylene(PX) oxidation. The computational results show that there are remarkable concentration and temperature gradients in EBCR for high ratio of height to diameter (H/DT). The temperature is lower at the bottom of column and higher at the top, due to rapid evaporation induced by the feed gas near the bottom. The concentration profiles in the gas phase are more nonuniform than those (except PX) in the liquid phase, which causes more solvent burning consumption at high H/DT ratio. For p-xylene oxidation, theo ptimal H/DT is around 5.展开更多
The Paris Agreement marks the beginning of a new era in the global response to climate change, which further clarifies the long-term goal and underlines the urgency addressing climate change. For China,promoting the d...The Paris Agreement marks the beginning of a new era in the global response to climate change, which further clarifies the long-term goal and underlines the urgency addressing climate change. For China,promoting the decoupling between economic growth and carbon emissions as soon as possible is not only the core task of achieving the medium-and long-term goals and strategies to address climate change, but also the inevitable requirement for ensuring the sustainable development of economy and society. Based on the analysis of the historical trends of the economy and social development, as well as society, energy consumption, and key end-use sectors in China, this paper studies the deep carbon emission reduction potential of carbon emission of in energy, industry, building, and transportation and other sectors with "bottom-up" modeling analysis and proposes a medium-and long-term deep decarbonization pathway based on key technologies' mitigation potentials for China. It is found that under deep decarbonization pathway, China will successfully realize the goals set in China's Intended Nationally Determined Contributions of achieving carbon emissions peak around 2030 and lowering carbon dioxide emissions per unit of gross domestic product(GDP) by 60-65% from the 2005 level.From 2030 onward, the development of nonfossil energy will further accelerates, and the share of nonfossil energies in primary energy will amounts to about 44% by 2050. Combined with the acceleration of low-carbon transformation in end-use sectors including industry, building, and transportation, the carbon dioxide emissions in 2050 will fall to the level before 2005, and the carbon dioxide emissions per unit of GDP will decreases by more than 90% from the 2005 level. To ensure the realization of the deep decarbonization pathway, this paper puts forward policy recommendations from four perspectives, including intensifying the total carbon dioxide emissions cap and strengthening the related institutional systems and regulations, improving the incentive policies for industrial lowcarbon development, enhancing the role of the market mechanism, and advocating low-carbon life and consumption patterns.展开更多
How would typhoon activity over the western North Pacific change for various scenarios of future global warming?Using the model projections of the Coupled Model Intercomparison Project phase 3(CMIP 3)under the SRES A1...How would typhoon activity over the western North Pacific change for various scenarios of future global warming?Using the model projections of the Coupled Model Intercomparison Project phase 3(CMIP 3)under the SRES A1B scenario,we generated summer(September)ice-free Arctic conditions,also referred to as Blue Arctic conditions,and then used the corresponding monthly sea surface temperature(SST)and a set of CO2concentrations to drive an AGCM model to simulate the resulting changes in background conditions affecting typhoon activity over the western North Pacific.Our results show that,during typhoon season(June to October),atmospheric and ocean circulations over the western North Pacific would be significantly different from the present circulations.Changes in the vertical shear of zonal wind and outgoing longwave radiation(OLR)in the western North Pacific are favorable for westward and northward shift,respectively,of the location of typhoon genesis.Moreover,changes in the above fields over the key area may be conducive to less frequent typhoons.In addition,the tropical cyclone genesis potential index(GPI)over the western North Pacific would decrease(increase)east(west)of 150°E(140°E).展开更多
基金This study was supported by the National Natural Science Foundation of China[grant numbers 41471343 and 41601457].
文摘As one of the regions with intensive agriculture and rapid economic development in China,North China also has a high nitrogen(N)deposition.This study characterized the spatial pattern of N deposition in North China,combining the tropospheric columns from satellite measurements and the simulated profiles from an atmospheric chemistry transport model.The total N deposition fluxes ranged from 16.3 to 106.5 kg N ha−1 yr−1,with an average of 54.5±17.2 kg N ha−1 yr−1.The high values were concentrated in urban and farmland areas,while low values were found in forests and grasslands with less human activities.Of the total N deposition,36%was deposited via precipitation,12%was deposited through dry particulate deposition,and the remaining 52%was comprised of dry gaseous deposition.For the seasonal variation of dry deposition,gaseous HNO3 and particulate NO3−were higher in winter and autumn,but lower in spring and summer.In contrast,gaseous NH3 and particulate NH4+were higher in spring and summer,but lower in winter and autumn.This is possibly caused by the seasonal differences in emission intensity between NOx and NH3 emission sources.The gaseous NO2 deposition did not show strong seasonal variation.The wet deposition was mainly affected by precipitation,with high values in summer and low values in winter.This research provides an objective spatial perspective and insight into the total N deposition in North China.
基金Supported by the National Natural Science Foundation of China (No. 20076039) and SINOPEC.
文摘Evaporating bubble column reactor (EBCR) is a kind of aerated reactor in which the reaction heat is removed by the evaporation of volatile reaction mixture. In this paper, a mathematical model that accounts for the gas-liquid exothermic reaction and axial dispersions of both gas and liquid phase is employed to study the performance of EBCR for the process of p-xylene(PX) oxidation. The computational results show that there are remarkable concentration and temperature gradients in EBCR for high ratio of height to diameter (H/DT). The temperature is lower at the bottom of column and higher at the top, due to rapid evaporation induced by the feed gas near the bottom. The concentration profiles in the gas phase are more nonuniform than those (except PX) in the liquid phase, which causes more solvent burning consumption at high H/DT ratio. For p-xylene oxidation, theo ptimal H/DT is around 5.
基金supported by The National Key Research and Development Program of China(Grant No.2016YFA0602800)The Pathways to Deep Decarbonization in 2050 ProjectChina's Deep Low Carbon Transition Pathway Research Project
文摘The Paris Agreement marks the beginning of a new era in the global response to climate change, which further clarifies the long-term goal and underlines the urgency addressing climate change. For China,promoting the decoupling between economic growth and carbon emissions as soon as possible is not only the core task of achieving the medium-and long-term goals and strategies to address climate change, but also the inevitable requirement for ensuring the sustainable development of economy and society. Based on the analysis of the historical trends of the economy and social development, as well as society, energy consumption, and key end-use sectors in China, this paper studies the deep carbon emission reduction potential of carbon emission of in energy, industry, building, and transportation and other sectors with "bottom-up" modeling analysis and proposes a medium-and long-term deep decarbonization pathway based on key technologies' mitigation potentials for China. It is found that under deep decarbonization pathway, China will successfully realize the goals set in China's Intended Nationally Determined Contributions of achieving carbon emissions peak around 2030 and lowering carbon dioxide emissions per unit of gross domestic product(GDP) by 60-65% from the 2005 level.From 2030 onward, the development of nonfossil energy will further accelerates, and the share of nonfossil energies in primary energy will amounts to about 44% by 2050. Combined with the acceleration of low-carbon transformation in end-use sectors including industry, building, and transportation, the carbon dioxide emissions in 2050 will fall to the level before 2005, and the carbon dioxide emissions per unit of GDP will decreases by more than 90% from the 2005 level. To ensure the realization of the deep decarbonization pathway, this paper puts forward policy recommendations from four perspectives, including intensifying the total carbon dioxide emissions cap and strengthening the related institutional systems and regulations, improving the incentive policies for industrial lowcarbon development, enhancing the role of the market mechanism, and advocating low-carbon life and consumption patterns.
基金supported by the National Basic Research Program of China (Grant No. 2012CB955401)the National Natural Science Foundation of China (Grant No. 41130103)Norwegian Research Council project "East-Asia DecCen"
文摘How would typhoon activity over the western North Pacific change for various scenarios of future global warming?Using the model projections of the Coupled Model Intercomparison Project phase 3(CMIP 3)under the SRES A1B scenario,we generated summer(September)ice-free Arctic conditions,also referred to as Blue Arctic conditions,and then used the corresponding monthly sea surface temperature(SST)and a set of CO2concentrations to drive an AGCM model to simulate the resulting changes in background conditions affecting typhoon activity over the western North Pacific.Our results show that,during typhoon season(June to October),atmospheric and ocean circulations over the western North Pacific would be significantly different from the present circulations.Changes in the vertical shear of zonal wind and outgoing longwave radiation(OLR)in the western North Pacific are favorable for westward and northward shift,respectively,of the location of typhoon genesis.Moreover,changes in the above fields over the key area may be conducive to less frequent typhoons.In addition,the tropical cyclone genesis potential index(GPI)over the western North Pacific would decrease(increase)east(west)of 150°E(140°E).