目的进行受控生态生命保障系统(controlled ecological life support system,CELSS)氧气流动及废弃物发酵处理研究,解决载人航天工程技术发展中生命保障问题。方法以"人-红萍-鱼"CELSS的氧气流动为着眼点,详细分析了CELSS氧...目的进行受控生态生命保障系统(controlled ecological life support system,CELSS)氧气流动及废弃物发酵处理研究,解决载人航天工程技术发展中生命保障问题。方法以"人-红萍-鱼"CELSS的氧气流动为着眼点,详细分析了CELSS氧气生产与供应能力,得出氧气盈缺平衡能力。结果在剥离生物可降解废物氧化降解需氧量的情况下,栽培面积50.4 m^2的红萍,可满足2人及100 kg鱼三者共生的CELSS氧气需求。结论发酵型生化反应器与红萍养殖循环系统有机耦合的废弃物发酵处理装置,是降解废弃物、优化系统耗氧、提高物质循环闭合度的一个有效途径。展开更多
In order to fundamentally solve the acidification problem of high sulfur-containing bauxite during storage, by simulating the environment of minerals storage in laboratory, the acidification mechanism and influencing ...In order to fundamentally solve the acidification problem of high sulfur-containing bauxite during storage, by simulating the environment of minerals storage in laboratory, the acidification mechanism and influencing factors of high sulfur-containing bauxite were studied and confirmed using the single variable method to control the atmosphere, water and other variables. The results show that the acidification is mostly caused by the oxidation of sulfur-containing bauxite, which is mainly the natural oxidation of Pyrite(Fe S2), then the alkaline minerals dissolute in the presence of water, leading to the acidification phenomenon, which is influenced by moisture and air flow. Finally, more acid-producing substances are formed, resulting in the acidification of high sulfur-containing bauxite. The acidification of high sulfur-containing bauxite results from the combined effect of the oxygen in the air and water, which can be significantly alleviated by controlling the diffusion of the oxygen in air.展开更多
Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction a...Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role.展开更多
A novel anaerobic reactor, jet biogas inter-loop anaerobic fluidized bed (JBILAFB), was designed and constructed. The start-up and performance of the reactor was investigated in the Process. of .artificial glucose w...A novel anaerobic reactor, jet biogas inter-loop anaerobic fluidized bed (JBILAFB), was designed and constructed. The start-up and performance of the reactor was investigated in the Process. of .artificial glucose wastewater treatment. With the wastewater recycle ratio of 2.5 : 1, the recycled wastewater with biogas could mix sludge and wastewater in the JBILAFB reactor completely. The start-up of the JBILAFB reactor could be completed in less than 70 d through maintenance of hydraulic retention time (HR^I") and stepwise increase of feed total organic carbon (TOC) concentration. After the start-up, with the volumetric TOC loadings of 14.3 kg·m ^-3·d^-1, the TOC removal ratio, the effluent pH, and the volatile fatty acids (VFA)/alkalinity of the JBILAFB reactor were more than 80%, close to 7.0 and less than 0.4, respectively. Moreover, CH4 was produced at more than 70% of the theoretical value, The reactor exhibited high stability under the condition of high volumetric TOC loading. Sludge granules in the JBILAFB reactor were developed during the start-up and their sizes were enlarged with the stepwise increase of volumetric TOC loadings from 0.8 kg.m^-3.d ^-1 to 14.3 kg.m^-3.d^-1. Granules, an offwhite color and a similar spherical shape, were mainly comprised of global-like bacteria. These had good methanogenic activity and settleability, which were formed probably through adhesion of the bacteria. Some inorganic metal compounds such as Fe, Ca, Mg, Al, etc. were advantageous to the formation of the granules.展开更多
Some variables that influence the slag splashing phenomenon in an oxygen steelmaking converter are numerically analyzed in this work. The effect of lance height, jet velocity, jet exit angle and slag viscosity on the ...Some variables that influence the slag splashing phenomenon in an oxygen steelmaking converter are numerically analyzed in this work. The effect of lance height, jet velocity, jet exit angle and slag viscosity on the washing and ejection mechanisms of slag splashing is studied employing transient two-dimensional computational fluid dynamics simulations. A parameter here called average slag volume fraction is proposed for the quantitative evaluation of the slag splashing efficiency. Besides, a qualitative comparison is made between the computational fluid dynamics results and physical model results from literature.展开更多
文摘目的进行受控生态生命保障系统(controlled ecological life support system,CELSS)氧气流动及废弃物发酵处理研究,解决载人航天工程技术发展中生命保障问题。方法以"人-红萍-鱼"CELSS的氧气流动为着眼点,详细分析了CELSS氧气生产与供应能力,得出氧气盈缺平衡能力。结果在剥离生物可降解废物氧化降解需氧量的情况下,栽培面积50.4 m^2的红萍,可满足2人及100 kg鱼三者共生的CELSS氧气需求。结论发酵型生化反应器与红萍养殖循环系统有机耦合的废弃物发酵处理装置,是降解废弃物、优化系统耗氧、提高物质循环闭合度的一个有效途径。
基金Project(2013AA064102)supported by the National High Technology Research and Development Program of China
文摘In order to fundamentally solve the acidification problem of high sulfur-containing bauxite during storage, by simulating the environment of minerals storage in laboratory, the acidification mechanism and influencing factors of high sulfur-containing bauxite were studied and confirmed using the single variable method to control the atmosphere, water and other variables. The results show that the acidification is mostly caused by the oxidation of sulfur-containing bauxite, which is mainly the natural oxidation of Pyrite(Fe S2), then the alkaline minerals dissolute in the presence of water, leading to the acidification phenomenon, which is influenced by moisture and air flow. Finally, more acid-producing substances are formed, resulting in the acidification of high sulfur-containing bauxite. The acidification of high sulfur-containing bauxite results from the combined effect of the oxygen in the air and water, which can be significantly alleviated by controlling the diffusion of the oxygen in air.
基金Project(2010AA065201)supported by the High Technology Research and Development Program of ChinaProject(2013zzts038)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(ZB2011CBBCe1)supported by the Major Program for Aluminum Corporation of China Limited,China
文摘Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces(EMFs) play the second role.
基金Supported by the National Natural Science Foundation of China (No.50278036), the Natural Science Foundation of Guangdong Province (No.04105951) and the National High Technology Research and Development Program of China (No.2006AA06Z378).
文摘A novel anaerobic reactor, jet biogas inter-loop anaerobic fluidized bed (JBILAFB), was designed and constructed. The start-up and performance of the reactor was investigated in the Process. of .artificial glucose wastewater treatment. With the wastewater recycle ratio of 2.5 : 1, the recycled wastewater with biogas could mix sludge and wastewater in the JBILAFB reactor completely. The start-up of the JBILAFB reactor could be completed in less than 70 d through maintenance of hydraulic retention time (HR^I") and stepwise increase of feed total organic carbon (TOC) concentration. After the start-up, with the volumetric TOC loadings of 14.3 kg·m ^-3·d^-1, the TOC removal ratio, the effluent pH, and the volatile fatty acids (VFA)/alkalinity of the JBILAFB reactor were more than 80%, close to 7.0 and less than 0.4, respectively. Moreover, CH4 was produced at more than 70% of the theoretical value, The reactor exhibited high stability under the condition of high volumetric TOC loading. Sludge granules in the JBILAFB reactor were developed during the start-up and their sizes were enlarged with the stepwise increase of volumetric TOC loadings from 0.8 kg.m^-3.d ^-1 to 14.3 kg.m^-3.d^-1. Granules, an offwhite color and a similar spherical shape, were mainly comprised of global-like bacteria. These had good methanogenic activity and settleability, which were formed probably through adhesion of the bacteria. Some inorganic metal compounds such as Fe, Ca, Mg, Al, etc. were advantageous to the formation of the granules.
文摘Some variables that influence the slag splashing phenomenon in an oxygen steelmaking converter are numerically analyzed in this work. The effect of lance height, jet velocity, jet exit angle and slag viscosity on the washing and ejection mechanisms of slag splashing is studied employing transient two-dimensional computational fluid dynamics simulations. A parameter here called average slag volume fraction is proposed for the quantitative evaluation of the slag splashing efficiency. Besides, a qualitative comparison is made between the computational fluid dynamics results and physical model results from literature.