Significant attention has been given to biogas production, purification and upgrading as a renewable and clean fuel supplement. Biogas is a product of an anaerobic digestion process comprising methane, carbon dioxide,...Significant attention has been given to biogas production, purification and upgrading as a renewable and clean fuel supplement. Biogas is a product of an anaerobic digestion process comprising methane, carbon dioxide,and trace amounts of other gases. Biogas purification removes trace gases in biogas for safe utilisation. Biogas upgrading produces methane-rich biogas by removing bulk carbon dioxide from the gas mixture. Several carbon dioxide removal techniques can be applied for biogas upgrading. However, chemical absorption of carbon dioxide for biogas upgrading is of special significance due to its operation at ambient or near ambient temperature and pressure, thus reducing energy consumption. This paper reviews the chemical absorption of carbon dioxide using amine scrubbing, caustic solvent scrubbing, and amino acid salt solution scrubbing. Each of these techniques for biogas upgrading is discussed. The paper concludes that an optimised implementation of the chemical absorption techniques for biogas upgrading requires further research.展开更多
Carbonyl peroxy radicals (RC(O)O2) are the ubiquitous radical intermediates in the atmospheric oxidation of volatile organic compounds. In this work, theoretical studies are carried out to explore the role of the unim...Carbonyl peroxy radicals (RC(O)O2) are the ubiquitous radical intermediates in the atmospheric oxidation of volatile organic compounds. In this work, theoretical studies are carried out to explore the role of the unimolecular H-migration in the carbonyl peroxy radicals by using quantum chemistry and kinetics calculations. The results showed that H-migration could be significant in the atmosphere at least in CH3CH2CH2C(O)O2 and (CH3)2CHCH2C(O)O2 with rates of ∽0.012 and -0.58^-1 at 298 K. Subsequent reactions of CH3CHCH2C(O)OOH would lead to the products with multi-functional groups, which might affect the aerosol formation process;while (CH3)2CCH2C(O)OOH would transform to formaldehyde and acetone in a few steps. These processes would be important for the atmospheric modelling of volatile organic compounds under low-NOx conditions.展开更多
Dioxygen activations constitute one of core issues in copper-dependent metalloenzymes. Upon O_(2) activation, copper-dependent metalloenzymes such as particulate methane monooxygenases(pM MOs), lytic polysaccharide mo...Dioxygen activations constitute one of core issues in copper-dependent metalloenzymes. Upon O_(2) activation, copper-dependent metalloenzymes such as particulate methane monooxygenases(pM MOs), lytic polysaccharide monooxygenases(LPMOs) and binuclear copper enzymes PHM and DβM, are able to perform various challenging C–H bond activations. Meanwhile, various copper-oxygen core containing complexes have been synthetized to mimic the active species of metalloenzymes. Dioxygen activation by mononuclear copper active site may generate various copper-oxygen intermediates, including Cu(Ⅱ)-superoxo, Cu(Ⅱ)-hydroperoxo, Cu(Ⅱ)-oxyl as well as the Cu(Ⅲ)-hydroxide species. Intriguingly, all these species have been invoked as the potential active intermediates for C–H/O–H activations in either biological or synthetic systems. Due to the poor understanding on reactivities of copper-oxygen complex, the nature of active species in both biological and synthetic systems are highly controversial. In this account, we will compare the reactivities of various mononuclear copper-oxygen species between biological systems and the synthetic systems. The present study is expected to provide the consistent understanding on reactivities of various copper-oxygen active species in both biological and synthetic systems.展开更多
文摘Significant attention has been given to biogas production, purification and upgrading as a renewable and clean fuel supplement. Biogas is a product of an anaerobic digestion process comprising methane, carbon dioxide,and trace amounts of other gases. Biogas purification removes trace gases in biogas for safe utilisation. Biogas upgrading produces methane-rich biogas by removing bulk carbon dioxide from the gas mixture. Several carbon dioxide removal techniques can be applied for biogas upgrading. However, chemical absorption of carbon dioxide for biogas upgrading is of special significance due to its operation at ambient or near ambient temperature and pressure, thus reducing energy consumption. This paper reviews the chemical absorption of carbon dioxide using amine scrubbing, caustic solvent scrubbing, and amino acid salt solution scrubbing. Each of these techniques for biogas upgrading is discussed. The paper concludes that an optimised implementation of the chemical absorption techniques for biogas upgrading requires further research.
基金supported by the National Key Research Development Program (No.2017YFC0212800)the National Natural Science Foundation of China (No.21477038 and No.21677051)the Natural Science Foundation of Guangdong Province (No.2016A030311005)
文摘Carbonyl peroxy radicals (RC(O)O2) are the ubiquitous radical intermediates in the atmospheric oxidation of volatile organic compounds. In this work, theoretical studies are carried out to explore the role of the unimolecular H-migration in the carbonyl peroxy radicals by using quantum chemistry and kinetics calculations. The results showed that H-migration could be significant in the atmosphere at least in CH3CH2CH2C(O)O2 and (CH3)2CHCH2C(O)O2 with rates of ∽0.012 and -0.58^-1 at 298 K. Subsequent reactions of CH3CHCH2C(O)OOH would lead to the products with multi-functional groups, which might affect the aerosol formation process;while (CH3)2CCH2C(O)OOH would transform to formaldehyde and acetone in a few steps. These processes would be important for the atmospheric modelling of volatile organic compounds under low-NOx conditions.
文摘Dioxygen activations constitute one of core issues in copper-dependent metalloenzymes. Upon O_(2) activation, copper-dependent metalloenzymes such as particulate methane monooxygenases(pM MOs), lytic polysaccharide monooxygenases(LPMOs) and binuclear copper enzymes PHM and DβM, are able to perform various challenging C–H bond activations. Meanwhile, various copper-oxygen core containing complexes have been synthetized to mimic the active species of metalloenzymes. Dioxygen activation by mononuclear copper active site may generate various copper-oxygen intermediates, including Cu(Ⅱ)-superoxo, Cu(Ⅱ)-hydroperoxo, Cu(Ⅱ)-oxyl as well as the Cu(Ⅲ)-hydroxide species. Intriguingly, all these species have been invoked as the potential active intermediates for C–H/O–H activations in either biological or synthetic systems. Due to the poor understanding on reactivities of copper-oxygen complex, the nature of active species in both biological and synthetic systems are highly controversial. In this account, we will compare the reactivities of various mononuclear copper-oxygen species between biological systems and the synthetic systems. The present study is expected to provide the consistent understanding on reactivities of various copper-oxygen active species in both biological and synthetic systems.