Production o f aromatics from lignin has attracted much attention. Because of the coexistence of C-O and C-C bonds and their complex combinations in the lignin macromolecular network, a plausible roadmap for de...Production o f aromatics from lignin has attracted much attention. Because of the coexistence of C-O and C-C bonds and their complex combinations in the lignin macromolecular network, a plausible roadmap for developing a lignin catalytic decomposition process could be developed by exploring the transformation mechanisms of various model compounds. Herein, decomposition of a lignin model compound, 2-phenoxyacetophenone (2-PAP), was investigated over several ce-sium-exchanged polyoxometalate (Cs-POM) catalysts. Decomposition of 2-PAP can follow two dif-ferent mechanisms: an active hydrogen transfer mechanism or an oxonium cation mechanism. The mechanism for most reactions depends on the competition between the acidity and redox proper-ties of the catalysts. The catalysts of POMs perform the following functions: promoting active hy-drogen liberated from ethanol and causing formation of and then temporarily stabilizing oxonium cations from 2-PAP. The use of Cs-PMo, which with strong redox ability, enhances hydrogen libera-tion and promotes liberated hydrogen transfer to the reaction intermediates. As a consequence, complete conversion of 2-PAP (〉99%) with excellent selectivities to the desired products (98.6% for phenol and 91.1% for acetophenone) can be achieved.展开更多
Novel reusable MnOx‐N@C catalyst has been developed for the direct oxidation of N‐heterocycles under solvent‐free conditions using TBHP as benign oxidant to give the corresponding N‐heterocyclic ketones. The catal...Novel reusable MnOx‐N@C catalyst has been developed for the direct oxidation of N‐heterocycles under solvent‐free conditions using TBHP as benign oxidant to give the corresponding N‐heterocyclic ketones. The catalytic system exhibited a broad substrate scope and excellent regi‐oselectivity, as well as being amenable to gram‐scale synthesis. This MnOx‐N@C catalyst also showed good reusability and was successfully recycled six times without any significant loss of activity.展开更多
Despite the significance of hydrogen bonding in deep eutectic solvents(DESs) for desulfurization processes, little is understood about the relationship between the DES composition, hydrogen-bonding strength, and oxi...Despite the significance of hydrogen bonding in deep eutectic solvents(DESs) for desulfurization processes, little is understood about the relationship between the DES composition, hydrogen-bonding strength, and oxidative desulfurization activity. In this study, a new family of caprolactam-based acidic DESs was prepared with different molar ratios of caprolactam and oxalic acid. The prepared DESs were characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, 1 H nuclear magnetic resonance, and thermogravimetric analyses. These DESs were employed for oxidative desulfurization reactions and the desulfurization efficiency was found to vary regularly with the DES composition. The factors influencing the removal of dibenzothiophene were systematically investigated and the desulfurization efficiency of the caprolactam-based acidic DESs reached as high as 98% under optimal conditions. The removal of different sulfur compounds followed the order: dibenzothiophene 4,6-dimethyldibenzothiophene benzothiophene. The combined experimental data and characterization results revealed that the oxidative desulfurization efficiency of the system was influenced by the hydrogen bonding interactions with the DES, which can be optimized by adjusting the DES composition. These findings regarding hydrogen bonding in DESs provide new insight for better understanding of the mechanism of diesel deep desulfurization processes.展开更多
Here,we demonstrate a photochemical strategy to site-specifically deposit Pd atoms on Au nanoparticles.The high-sensitivity low-energy ion scattering spectra combined with the X-ray photoelectron spectra reveal that t...Here,we demonstrate a photochemical strategy to site-specifically deposit Pd atoms on Au nanoparticles.The high-sensitivity low-energy ion scattering spectra combined with the X-ray photoelectron spectra reveal that the surface electronic structure of Pd can be continuously regulated by tailoring the Pd-to-Au molar ratio and the location of Pd atoms in Au Pd nanoparticles.It is revealed that electron-rich Pd atoms are considerably more active than the net Pd atoms in aerobic alcohol oxidation.Remarkably,the catalyst with the most electron-rich Pd sites(binding energy downshift:1.0 e V)exhibits an extremely high turnover frequency(~500000 h-1 vs 12000 h-1 for that with net Pd atoms)for solvent-free selective oxidation of benzyl alcohol,which is,to the best of our knowledge,the highest value ever reported.Kinetic studies reveal that electron-rich Pd atoms can accelerate the oxidation of benzyl alcohol by facilitating C-H cleavage,as indicated by the significant reduction in the activation energy as compared to net Pd atoms.展开更多
Dioxygen activations constitute one of core issues in copper-dependent metalloenzymes. Upon O_(2) activation, copper-dependent metalloenzymes such as particulate methane monooxygenases(pM MOs), lytic polysaccharide mo...Dioxygen activations constitute one of core issues in copper-dependent metalloenzymes. Upon O_(2) activation, copper-dependent metalloenzymes such as particulate methane monooxygenases(pM MOs), lytic polysaccharide monooxygenases(LPMOs) and binuclear copper enzymes PHM and DβM, are able to perform various challenging C–H bond activations. Meanwhile, various copper-oxygen core containing complexes have been synthetized to mimic the active species of metalloenzymes. Dioxygen activation by mononuclear copper active site may generate various copper-oxygen intermediates, including Cu(Ⅱ)-superoxo, Cu(Ⅱ)-hydroperoxo, Cu(Ⅱ)-oxyl as well as the Cu(Ⅲ)-hydroxide species. Intriguingly, all these species have been invoked as the potential active intermediates for C–H/O–H activations in either biological or synthetic systems. Due to the poor understanding on reactivities of copper-oxygen complex, the nature of active species in both biological and synthetic systems are highly controversial. In this account, we will compare the reactivities of various mononuclear copper-oxygen species between biological systems and the synthetic systems. The present study is expected to provide the consistent understanding on reactivities of various copper-oxygen active species in both biological and synthetic systems.展开更多
SiO2‐supported monometallic Ni and bimetallic Ni‐In catalysts were prepared and used for hydrodeoxygenation of anisole,which was used as a model bio‐oil compound,for BTX(benzene,toluene,and xylene)production.The ef...SiO2‐supported monometallic Ni and bimetallic Ni‐In catalysts were prepared and used for hydrodeoxygenation of anisole,which was used as a model bio‐oil compound,for BTX(benzene,toluene,and xylene)production.The effects of the Ni/In ratio and Ni content on the structures and performances of the catalysts were investigated.The results show that In atoms were incorporated into the Ni metal lattice.Although the Ni‐In bimetallic crystallites were similar in size to those of monometallic Ni at the same Ni content,H2uptake by the bimetallic Ni‐In catalyst was much lower than that by monometallic Ni because of dilution of Ni atoms by In atoms.Charge transfer from In to Ni was observed for the bimetallic Ni‐In catalysts.All the results indicate intimate contact between Ni and In atoms,and the In atoms geometrically and electronically modified the Ni atoms.In the hydrodeoxygenation of anisole,although the activities of the Ni‐In bimetallic catalysts in the conversion of anisole were lower than that of the monometallic Ni catalyst,they gave higher selectivities for BTX and cyclohexane as a result of suppression of benzene ring hydrogenation and C–C bond hydrogenolysis.They also showed lower methanation activity.These results will be useful for enhancing carbon yields and reducing H2consumption.In addition,the lower the Ni/In ratio was,the greater was the effect of In on the catalytic performance.The selectivity for BTX was primarily determined by the Ni/In ratio and was little affected by the Ni content.We suggest that the performance of the Ni‐In bimetallic catalyst can be ascribed to the geometric and electronic effects of In.展开更多
Au and Au-containing bimetallic nanoparticles are promising catalysts for the green synthesis of fine chemicals. Here, we used a Au6Pd/resin catalyst for the aerobic C-C cross-coupling of primary and secondary alcohol...Au and Au-containing bimetallic nanoparticles are promising catalysts for the green synthesis of fine chemicals. Here, we used a Au6Pd/resin catalyst for the aerobic C-C cross-coupling of primary and secondary alcohols to produce higher ketones under mild conditions. This is of importance to the construction of a C-C bond. Various substrates were used in the reaction system, and moderate to good yields were obtained. The catalysts can be reused at least five times without decrease of yield. The control experiment and XAFS characterization results showed that hydrogen au- to-transfer occurred on metallic Pd sites even under oxidative conditions. On alloying with Au, the Pd sites became resistant to oxidation and readily abstracted the β-H of the alcohols and transferred the hydride to the C=C bond in the reaction intermediate to give the saturated product.展开更多
The halogen and hydrogen bonding complexes and trihalomethanes (CHX3, X=C1, Br, I) are between 2,2,6,6-tetramethylpiperidine-noxyl simulated by computational quantum chem- istry. The molecular electrostatic potentia...The halogen and hydrogen bonding complexes and trihalomethanes (CHX3, X=C1, Br, I) are between 2,2,6,6-tetramethylpiperidine-noxyl simulated by computational quantum chem- istry. The molecular electrostatic potentials, geometrical parameters and interaction energy of halogen and hydrogen bonding complexes combined with natural bond orbital analysis are obtained. The results indicate that both halogen and hydrogen bonding interactions obey the order CI〈Br〈I, and hydrogen bonding is stronger than the corresponding halogen bond- ing. So, hydrogen bonding complexes should be dominant in trihalomethanes. However, it is possible that halogen bonding complex is competitive, even preponderant, in triiodomethane due to the similar interaction energy. This work might provide useful information on specific solvent effects as well as for understanding the mechanism of nitroxide radicals as a bioprobe to interact with the halogenated compounds in biological and biochemical fields.展开更多
The reduction of an aqueous solution of sodium molybdate by iron powder at low pH value (~0.83), in the presence of ethylenediaminetetraacetate (EDTA) ligand, gives the title compound [Fe(H 2O) 6][Mo 2O 4(EDTA)]·...The reduction of an aqueous solution of sodium molybdate by iron powder at low pH value (~0.83), in the presence of ethylenediaminetetraacetate (EDTA) ligand, gives the title compound [Fe(H 2O) 6][Mo 2O 4(EDTA)]·5H 2O 1, which was characterized by elemental analysis, IR and X ray single crystal diffraction techniques. Compound 1 crystallizes in monoclinic system, space group P2 1/c, C 10 H 34 N 2FeMo 2O 23 , M r=798.12, a=8.781(1), b=14.081(1), c=21.353(1) , β= 92\^688(1)°, V = 2637.2(3) 3, Z = 4, D c = 2.010 g·cm -3 , μ = 1.579 mm -1 , F (000)=1608, the final R =0.0530 and wR =0.1271 for 3312 observed reflections. The binuclear oxomolybdenum(V) anion and the six coordinated Fe(II) cation are linked to infinite three dimensional network through several hydrogen bonds towards different directions between crystal waters, Fe(II) cation and Mo(V) anion.展开更多
A new organic-inorganic hybrid material [Na6(H2O)16(dod)2V10O28] (dod = 1,4- diazoniabicyclo[2,2,2]octane-1,4-diacetate) has been synthesized and X-ray single-crystal structural analysis reveals it crystallizes in tri...A new organic-inorganic hybrid material [Na6(H2O)16(dod)2V10O28] (dod = 1,4- diazoniabicyclo[2,2,2]octane-1,4-diacetate) has been synthesized and X-ray single-crystal structural analysis reveals it crystallizes in triclinic, space group P with a = 11.533(7), b = 12.031(7), c = 12.187(4) ? a = 72.47(1), b = 73.16(1), g = 68.21(1)o, C20H64N4Na6O52V10, V = 1467(1) ?, Z = 1, Mr = 1840.1, Dc = 2.083 g/cm3, MoKa, l = 0.71073 ? m = 1.686, F(000) = 924, S = 1.027, the final R = 0.0538 and wR = 0.1272 for 4398 observed reflections. The compound has a three-dimensional frame- work constructed from decavanadate clusters, NaO chains and dod ligands. A variety of OH…O and CH…O hydrogen bonds play an important role in stabilizing the framework.展开更多
The title compound [H4As8V14O42(H2O)]6H2O 1 has been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction analysis. It crystallizes in trigonal, space group R3c with a = b = 36...The title compound [H4As8V14O42(H2O)]6H2O 1 has been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction analysis. It crystallizes in trigonal, space group R3c with a = b = 36.447(6), c = 21.485(5) ? V = 24717(8) 3, Z = 18, Mr = 2114.66, Dc = 2.557g/cm3, F(000) = 17928, m = 7.149 mm-1, R = 0.0792 and wR = 0.1265. The [H4As8V14O42- (H2O)] cluster consists of fourteen VO5 square pyramids linked by four As2O5 handle-like units.展开更多
The oxidative dehydrogenation(ODH) of propane on monomeric VO3 supported by CeO2(111)(VO3/CeO 2(111)) is studied by periodic density functional theory calculations. Detailed energetic, structural, and electron...The oxidative dehydrogenation(ODH) of propane on monomeric VO3 supported by CeO2(111)(VO3/CeO 2(111)) is studied by periodic density functional theory calculations. Detailed energetic, structural, and electronic properties of these reactions are determined. The calculated activation energies of the breaking of the first and second C–H bonds of propane on the VO3/CeO2(111) catalyst are compared, and it is found that both the unique structural and electronic effects of the VO3/CeO2(111) catalyst contribute to the relatively easy rupture of the first C–H bond of the propane molecule during the ODH reaction. In particular, the so-called new empty localized states that are mainly constituted of O2 porbitals of the ceria-supported VO3 species are determined to be crucial for assisting the cleavage of the first C–H bond of the propane molecule. Following this they become occupied and the remaining C–H bonds become increasingly difficult to break owing to the increasing repulsion between the localized 4 felectrons at the Cecations, resulting in the adsorption of more H and other moieties. This work illustrates that CeO2-supported monomeric vanadium oxides can exhibit unique activity and selectivity for the catalytic ODH of alkanes to alkenes.展开更多
A new Cu(Ⅱ) coordination polymer [Cu(inio)2(H2O)] (inio = isonicotinic acid N-oxide) with chemical formula C12H10CuN2O7 was prepared and its crystal structure has been determined by X-ray analysis. The complex crysta...A new Cu(Ⅱ) coordination polymer [Cu(inio)2(H2O)] (inio = isonicotinic acid N-oxide) with chemical formula C12H10CuN2O7 was prepared and its crystal structure has been determined by X-ray analysis. The complex crystallizes in the monoclinic system, space group C2/c with a = 12.455(3), b = 6.202(1), c = 16.555(3) ? b = 106.776(3), V = 1224.3(4) 3, Z = 4, Mr = 357.76, Dc =1.941 g/cm3, m(MoKa) = 1.827 mm-1, F(000) = 724, R = 0.0601 and wR = 0.1417 for 908 observed reflections (I > 2s(I)). The Cu(Ⅱ) atom is coordinated by an elongated square pyramid geometry. The deprotonated isonicotinic acid N-oxides form a double-bridge between each pair of Cu(Ⅱ) ions in trans form through two oxygen atoms from the carboxyl groups and two other oxygen atoms from the -NO groups, respectively, which leads to an infinite one dimensional chain. The two adjacent elongated Cu(Ⅱ) square pyramidal geometries are arranged in trans form in the same chain. The OH…O hydrogen bonds extend the chain structure into two-dimensional layers.展开更多
The adsorption and dissociation of CH3OH on TiO2 (110) were studied using density functional theory methods. Our results suggest that CH3OH molecules can adsorb up to 3/4 ML (1 ML=5.2× 10^14 molecules/cm2) co...The adsorption and dissociation of CH3OH on TiO2 (110) were studied using density functional theory methods. Our results suggest that CH3OH molecules can adsorb up to 3/4 ML (1 ML=5.2× 10^14 molecules/cm2) coverage at five-coordinated titanium (Tisc) sites to form the first layer. In the second layer, the CH3OH is adsorbed at bridge-bonded oxygen, and from the third layer, the CH3OH molecules form a hydrogen-bonded network with each other. The theoretical results show that dissociation of multilayer adsorbed methanol to aldehyde occurs through a stepwise pathway, with easy O-H bond dissociation and rate-determining C-H bond dissociation. The dissociation barriers for 8 or 12 CH3OH molecules on TiO2 are higher than that for low coverage by 0.15-0.21 eV; this suggests that the dissociation of multilayer adsorbed CH3OH is harder.展开更多
Self-healing materials(SHMs)with unique mechanical and electronic properties are promising for self-reparable electronics and robots.However,the self-healing ability of emerging two-dimensional(2D)materials,for instan...Self-healing materials(SHMs)with unique mechanical and electronic properties are promising for self-reparable electronics and robots.However,the self-healing ability of emerging two-dimensional(2D)materials,for instance,MXenes,has not been systematically investigated,which limits their applications in self-healing electronics.Herein,we report the homogeneous self-healing assembly(homoSHA)of MXene and the heterogeneous self-healing assembly(hetero-SHA)of MXene and graphene oxide(GO)under moisture treatments.The self-healing mechanism has been attributed to the hydration induced interlayer swelling of MXene and GO and the recombination of hydrogen bond networks after water desorption.The multiform hetero-SHA of MXene and GO not only enables facile fabrication of free-standing soft electronics and robots,but also endows the resultant devices with damage-healing properties.As proof-of-concept demonstrations,free-standing soft electronic devices including a generator,a humidity sensor,a pressure sensor,and several robotic devices have been fabricated.The hetero-SHA of MXene and GO is simple yet effective,and it may pioneer a new avenue to develop miniature soft electronics and robots based on 2D materials.展开更多
基金supported by the National Key Basic Research Program of China(973 program,2013CB934101)National Natural Science Foundation of China(21433002,21573046)+1 种基金China Postdoctoral Science Foundation(2016M601492)International Science and Technology Cooperation Projects of Guangxi(15104001-5)~~
文摘Production o f aromatics from lignin has attracted much attention. Because of the coexistence of C-O and C-C bonds and their complex combinations in the lignin macromolecular network, a plausible roadmap for developing a lignin catalytic decomposition process could be developed by exploring the transformation mechanisms of various model compounds. Herein, decomposition of a lignin model compound, 2-phenoxyacetophenone (2-PAP), was investigated over several ce-sium-exchanged polyoxometalate (Cs-POM) catalysts. Decomposition of 2-PAP can follow two dif-ferent mechanisms: an active hydrogen transfer mechanism or an oxonium cation mechanism. The mechanism for most reactions depends on the competition between the acidity and redox proper-ties of the catalysts. The catalysts of POMs perform the following functions: promoting active hy-drogen liberated from ethanol and causing formation of and then temporarily stabilizing oxonium cations from 2-PAP. The use of Cs-PMo, which with strong redox ability, enhances hydrogen libera-tion and promotes liberated hydrogen transfer to the reaction intermediates. As a consequence, complete conversion of 2-PAP (〉99%) with excellent selectivities to the desired products (98.6% for phenol and 91.1% for acetophenone) can be achieved.
基金supported by the National Basic research Program of China (973 Program,2009CB623505)the National Natural Science Foundation of China (21273225)~~
文摘Novel reusable MnOx‐N@C catalyst has been developed for the direct oxidation of N‐heterocycles under solvent‐free conditions using TBHP as benign oxidant to give the corresponding N‐heterocyclic ketones. The catalytic system exhibited a broad substrate scope and excellent regi‐oselectivity, as well as being amenable to gram‐scale synthesis. This MnOx‐N@C catalyst also showed good reusability and was successfully recycled six times without any significant loss of activity.
基金supported by the National Natural Science Foundation of China(21676230,21373177)~~
文摘Despite the significance of hydrogen bonding in deep eutectic solvents(DESs) for desulfurization processes, little is understood about the relationship between the DES composition, hydrogen-bonding strength, and oxidative desulfurization activity. In this study, a new family of caprolactam-based acidic DESs was prepared with different molar ratios of caprolactam and oxalic acid. The prepared DESs were characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, 1 H nuclear magnetic resonance, and thermogravimetric analyses. These DESs were employed for oxidative desulfurization reactions and the desulfurization efficiency was found to vary regularly with the DES composition. The factors influencing the removal of dibenzothiophene were systematically investigated and the desulfurization efficiency of the caprolactam-based acidic DESs reached as high as 98% under optimal conditions. The removal of different sulfur compounds followed the order: dibenzothiophene 4,6-dimethyldibenzothiophene benzothiophene. The combined experimental data and characterization results revealed that the oxidative desulfurization efficiency of the system was influenced by the hydrogen bonding interactions with the DES, which can be optimized by adjusting the DES composition. These findings regarding hydrogen bonding in DESs provide new insight for better understanding of the mechanism of diesel deep desulfurization processes.
文摘Here,we demonstrate a photochemical strategy to site-specifically deposit Pd atoms on Au nanoparticles.The high-sensitivity low-energy ion scattering spectra combined with the X-ray photoelectron spectra reveal that the surface electronic structure of Pd can be continuously regulated by tailoring the Pd-to-Au molar ratio and the location of Pd atoms in Au Pd nanoparticles.It is revealed that electron-rich Pd atoms are considerably more active than the net Pd atoms in aerobic alcohol oxidation.Remarkably,the catalyst with the most electron-rich Pd sites(binding energy downshift:1.0 e V)exhibits an extremely high turnover frequency(~500000 h-1 vs 12000 h-1 for that with net Pd atoms)for solvent-free selective oxidation of benzyl alcohol,which is,to the best of our knowledge,the highest value ever reported.Kinetic studies reveal that electron-rich Pd atoms can accelerate the oxidation of benzyl alcohol by facilitating C-H cleavage,as indicated by the significant reduction in the activation energy as compared to net Pd atoms.
文摘Dioxygen activations constitute one of core issues in copper-dependent metalloenzymes. Upon O_(2) activation, copper-dependent metalloenzymes such as particulate methane monooxygenases(pM MOs), lytic polysaccharide monooxygenases(LPMOs) and binuclear copper enzymes PHM and DβM, are able to perform various challenging C–H bond activations. Meanwhile, various copper-oxygen core containing complexes have been synthetized to mimic the active species of metalloenzymes. Dioxygen activation by mononuclear copper active site may generate various copper-oxygen intermediates, including Cu(Ⅱ)-superoxo, Cu(Ⅱ)-hydroperoxo, Cu(Ⅱ)-oxyl as well as the Cu(Ⅲ)-hydroxide species. Intriguingly, all these species have been invoked as the potential active intermediates for C–H/O–H activations in either biological or synthetic systems. Due to the poor understanding on reactivities of copper-oxygen complex, the nature of active species in both biological and synthetic systems are highly controversial. In this account, we will compare the reactivities of various mononuclear copper-oxygen species between biological systems and the synthetic systems. The present study is expected to provide the consistent understanding on reactivities of various copper-oxygen active species in both biological and synthetic systems.
基金supported by the National Natural Science Foundation of China(21576193,21176177)~~
文摘SiO2‐supported monometallic Ni and bimetallic Ni‐In catalysts were prepared and used for hydrodeoxygenation of anisole,which was used as a model bio‐oil compound,for BTX(benzene,toluene,and xylene)production.The effects of the Ni/In ratio and Ni content on the structures and performances of the catalysts were investigated.The results show that In atoms were incorporated into the Ni metal lattice.Although the Ni‐In bimetallic crystallites were similar in size to those of monometallic Ni at the same Ni content,H2uptake by the bimetallic Ni‐In catalyst was much lower than that by monometallic Ni because of dilution of Ni atoms by In atoms.Charge transfer from In to Ni was observed for the bimetallic Ni‐In catalysts.All the results indicate intimate contact between Ni and In atoms,and the In atoms geometrically and electronically modified the Ni atoms.In the hydrodeoxygenation of anisole,although the activities of the Ni‐In bimetallic catalysts in the conversion of anisole were lower than that of the monometallic Ni catalyst,they gave higher selectivities for BTX and cyclohexane as a result of suppression of benzene ring hydrogenation and C–C bond hydrogenolysis.They also showed lower methanation activity.These results will be useful for enhancing carbon yields and reducing H2consumption.In addition,the lower the Ni/In ratio was,the greater was the effect of In on the catalytic performance.The selectivity for BTX was primarily determined by the Ni/In ratio and was little affected by the Ni content.We suggest that the performance of the Ni‐In bimetallic catalyst can be ascribed to the geometric and electronic effects of In.
基金supported by the National Natural Science Foundation of China (21373206, 21202163, 21303194, 21476227, 21503219)~~
文摘Au and Au-containing bimetallic nanoparticles are promising catalysts for the green synthesis of fine chemicals. Here, we used a Au6Pd/resin catalyst for the aerobic C-C cross-coupling of primary and secondary alcohols to produce higher ketones under mild conditions. This is of importance to the construction of a C-C bond. Various substrates were used in the reaction system, and moderate to good yields were obtained. The catalysts can be reused at least five times without decrease of yield. The control experiment and XAFS characterization results showed that hydrogen au- to-transfer occurred on metallic Pd sites even under oxidative conditions. On alloying with Au, the Pd sites became resistant to oxidation and readily abstracted the β-H of the alcohols and transferred the hydride to the C=C bond in the reaction intermediate to give the saturated product.
基金This work is supported by the National Natural Science Foundation of China (No.20675009 and No.90922023) and the Research Fund for the Doctoral Program of Higher Education of China (No.273914).
文摘The halogen and hydrogen bonding complexes and trihalomethanes (CHX3, X=C1, Br, I) are between 2,2,6,6-tetramethylpiperidine-noxyl simulated by computational quantum chem- istry. The molecular electrostatic potentials, geometrical parameters and interaction energy of halogen and hydrogen bonding complexes combined with natural bond orbital analysis are obtained. The results indicate that both halogen and hydrogen bonding interactions obey the order CI〈Br〈I, and hydrogen bonding is stronger than the corresponding halogen bond- ing. So, hydrogen bonding complexes should be dominant in trihalomethanes. However, it is possible that halogen bonding complex is competitive, even preponderant, in triiodomethane due to the similar interaction energy. This work might provide useful information on specific solvent effects as well as for understanding the mechanism of nitroxide radicals as a bioprobe to interact with the halogenated compounds in biological and biochemical fields.
文摘The reduction of an aqueous solution of sodium molybdate by iron powder at low pH value (~0.83), in the presence of ethylenediaminetetraacetate (EDTA) ligand, gives the title compound [Fe(H 2O) 6][Mo 2O 4(EDTA)]·5H 2O 1, which was characterized by elemental analysis, IR and X ray single crystal diffraction techniques. Compound 1 crystallizes in monoclinic system, space group P2 1/c, C 10 H 34 N 2FeMo 2O 23 , M r=798.12, a=8.781(1), b=14.081(1), c=21.353(1) , β= 92\^688(1)°, V = 2637.2(3) 3, Z = 4, D c = 2.010 g·cm -3 , μ = 1.579 mm -1 , F (000)=1608, the final R =0.0530 and wR =0.1271 for 3312 observed reflections. The binuclear oxomolybdenum(V) anion and the six coordinated Fe(II) cation are linked to infinite three dimensional network through several hydrogen bonds towards different directions between crystal waters, Fe(II) cation and Mo(V) anion.
文摘A new organic-inorganic hybrid material [Na6(H2O)16(dod)2V10O28] (dod = 1,4- diazoniabicyclo[2,2,2]octane-1,4-diacetate) has been synthesized and X-ray single-crystal structural analysis reveals it crystallizes in triclinic, space group P with a = 11.533(7), b = 12.031(7), c = 12.187(4) ? a = 72.47(1), b = 73.16(1), g = 68.21(1)o, C20H64N4Na6O52V10, V = 1467(1) ?, Z = 1, Mr = 1840.1, Dc = 2.083 g/cm3, MoKa, l = 0.71073 ? m = 1.686, F(000) = 924, S = 1.027, the final R = 0.0538 and wR = 0.1272 for 4398 observed reflections. The compound has a three-dimensional frame- work constructed from decavanadate clusters, NaO chains and dod ligands. A variety of OH…O and CH…O hydrogen bonds play an important role in stabilizing the framework.
基金Supported by the National NSF of China (No. 20271050 20271021 and 20333070) and the NSF of Fujian province (No.210029)
文摘The title compound [H4As8V14O42(H2O)]6H2O 1 has been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction analysis. It crystallizes in trigonal, space group R3c with a = b = 36.447(6), c = 21.485(5) ? V = 24717(8) 3, Z = 18, Mr = 2114.66, Dc = 2.557g/cm3, F(000) = 17928, m = 7.149 mm-1, R = 0.0792 and wR = 0.1265. The [H4As8V14O42- (H2O)] cluster consists of fourteen VO5 square pyramids linked by four As2O5 handle-like units.
基金supported by the National Natural Science Foundation of China(21421004,21573067,91545103)Program of Shanghai Academic Research Leader(17XD1401400)~~
文摘The oxidative dehydrogenation(ODH) of propane on monomeric VO3 supported by CeO2(111)(VO3/CeO 2(111)) is studied by periodic density functional theory calculations. Detailed energetic, structural, and electronic properties of these reactions are determined. The calculated activation energies of the breaking of the first and second C–H bonds of propane on the VO3/CeO2(111) catalyst are compared, and it is found that both the unique structural and electronic effects of the VO3/CeO2(111) catalyst contribute to the relatively easy rupture of the first C–H bond of the propane molecule during the ODH reaction. In particular, the so-called new empty localized states that are mainly constituted of O2 porbitals of the ceria-supported VO3 species are determined to be crucial for assisting the cleavage of the first C–H bond of the propane molecule. Following this they become occupied and the remaining C–H bonds become increasingly difficult to break owing to the increasing repulsion between the localized 4 felectrons at the Cecations, resulting in the adsorption of more H and other moieties. This work illustrates that CeO2-supported monomeric vanadium oxides can exhibit unique activity and selectivity for the catalytic ODH of alkanes to alkenes.
基金the Natural Science Foundation of Xuzhou Normal University (01BXL009)
文摘A new Cu(Ⅱ) coordination polymer [Cu(inio)2(H2O)] (inio = isonicotinic acid N-oxide) with chemical formula C12H10CuN2O7 was prepared and its crystal structure has been determined by X-ray analysis. The complex crystallizes in the monoclinic system, space group C2/c with a = 12.455(3), b = 6.202(1), c = 16.555(3) ? b = 106.776(3), V = 1224.3(4) 3, Z = 4, Mr = 357.76, Dc =1.941 g/cm3, m(MoKa) = 1.827 mm-1, F(000) = 724, R = 0.0601 and wR = 0.1417 for 908 observed reflections (I > 2s(I)). The Cu(Ⅱ) atom is coordinated by an elongated square pyramid geometry. The deprotonated isonicotinic acid N-oxides form a double-bridge between each pair of Cu(Ⅱ) ions in trans form through two oxygen atoms from the carboxyl groups and two other oxygen atoms from the -NO groups, respectively, which leads to an infinite one dimensional chain. The two adjacent elongated Cu(Ⅱ) square pyramidal geometries are arranged in trans form in the same chain. The OH…O hydrogen bonds extend the chain structure into two-dimensional layers.
基金financially supported by National Natural Science Foundation of China(21173212)the Key Research Program of the Chinese Academy of Sciences
文摘The adsorption and dissociation of CH3OH on TiO2 (110) were studied using density functional theory methods. Our results suggest that CH3OH molecules can adsorb up to 3/4 ML (1 ML=5.2× 10^14 molecules/cm2) coverage at five-coordinated titanium (Tisc) sites to form the first layer. In the second layer, the CH3OH is adsorbed at bridge-bonded oxygen, and from the third layer, the CH3OH molecules form a hydrogen-bonded network with each other. The theoretical results show that dissociation of multilayer adsorbed methanol to aldehyde occurs through a stepwise pathway, with easy O-H bond dissociation and rate-determining C-H bond dissociation. The dissociation barriers for 8 or 12 CH3OH molecules on TiO2 are higher than that for low coverage by 0.15-0.21 eV; this suggests that the dissociation of multilayer adsorbed CH3OH is harder.
基金supported by the National Natural Science Foundation of China(61935008,61775078,and 61905087)Graduate Interdisciplinary Research Fund of Jilin University(101832020DJX059)。
文摘Self-healing materials(SHMs)with unique mechanical and electronic properties are promising for self-reparable electronics and robots.However,the self-healing ability of emerging two-dimensional(2D)materials,for instance,MXenes,has not been systematically investigated,which limits their applications in self-healing electronics.Herein,we report the homogeneous self-healing assembly(homoSHA)of MXene and the heterogeneous self-healing assembly(hetero-SHA)of MXene and graphene oxide(GO)under moisture treatments.The self-healing mechanism has been attributed to the hydration induced interlayer swelling of MXene and GO and the recombination of hydrogen bond networks after water desorption.The multiform hetero-SHA of MXene and GO not only enables facile fabrication of free-standing soft electronics and robots,but also endows the resultant devices with damage-healing properties.As proof-of-concept demonstrations,free-standing soft electronic devices including a generator,a humidity sensor,a pressure sensor,and several robotic devices have been fabricated.The hetero-SHA of MXene and GO is simple yet effective,and it may pioneer a new avenue to develop miniature soft electronics and robots based on 2D materials.