Chemically resistant anodic oxide layers were formed on pure aluminum substrates in oxalic acid-sulphuric acid bath.Acid dissolution tests of the obtained anodic layers were achieved in accordance with the ASTM B 680-...Chemically resistant anodic oxide layers were formed on pure aluminum substrates in oxalic acid-sulphuric acid bath.Acid dissolution tests of the obtained anodic layers were achieved in accordance with the ASTM B 680-80 specifications:35mL/L 85% H3PO4+20g/L CrO3 at 38℃.Influence of oxalic acid concentration,bath temperature and anodic current density on dissolution rate and coating ratio was examined,when the sulphuric acid concentration was maintained at 160g/L.It was found that chemically resistant and compact oxide layers were produced under low operational temperature (5℃) and high current densities (3A/dm^2).A beneficial effect was observed concerning the addition of oxalic acid (18g/L).The morphology and the composition of the anodic oxide layer were examined by scanning electron microscopy (SEM),atomic force microscopy (AFM) and glow-discharge optical emission spectroscopy (GDOES).展开更多
Andrographis paniculata Nees has been extensively used for traditional medicine and help against fever dysentery, diarrhoea, inflammation, and sore throat. In this study, andrographolide, the main component of this pl...Andrographis paniculata Nees has been extensively used for traditional medicine and help against fever dysentery, diarrhoea, inflammation, and sore throat. In this study, andrographolide, the main component of this plant was extracted from the leaves of A. paniculata using supercritical carbon dioxide. The operating pressures were varied from 7.50 to 20MPa, the temperatures were varied from 30℃ to 60℃, and the flow rates were varied from 0.5 to 4ml.min^-1. The best extraction condition occurred at 10MPa, 40℃, and a flow rate of 2ml.min^-1 for a 3g sample of A. paniculata ground-dried leaves. The measured extraction rate was found to be about 0.0174g of andrographolide per gram of andrographolide present in the leaves per hour of operation. The future studies must focus on the interaction between the various operating parameters such as temperature, pressure, and flow rate of supercritical carbon dioxide.展开更多
A series of glass are synthesized via a melt quenching technique based on the Li_(2)O-Ni O-P_(2)O_(5) system.The concentration of nickel oxide varies from 5%to 15%in molar fraction.XRD pattern verifies the amorphous n...A series of glass are synthesized via a melt quenching technique based on the Li_(2)O-Ni O-P_(2)O_(5) system.The concentration of nickel oxide varies from 5%to 15%in molar fraction.XRD pattern verifies the amorphous nature of prepared glass samples with 5%,and 10%nickel oxide in molar fraction.While Li_(3)P and Ni_(2)P_(4)O_(12)phases are precipitated with a high nickel content up to 15%in molar fraction.As nickel is substituted for lithium,a systematic increase in glass transition temperature(T_(g))and glass softening temperatures(T_(s))is observed.This is greatly related to the increased structure,coherence in the glass network.Structural investigation showed that Ni_(2+) spectra are present in both octahedral and tetrahedral sites.Physical properties such as glass density((2.38±0.1)-(2.46±0.1)g/cm^(3)),and molar volume((42.28±0.1)-(39.15±0.1)cm^(3)/mol)are examined.The NiO/Li_(2)O replacements led to a decrease in the dissolution rate of the resultant amorphous materials from 1.53×10^(-5)to 3.20×10^(-6)g/(cm^(2)·min).Thermal expansion coefficients CTE of the glasses are diverse from 157×10^(-7) to 96×10^(-7)℃^(-1) over the temperature range of 25-250℃.The prepared glasses are expected to be useful as a low-temperature sealing material.展开更多
PCA (principal component analysis), CCA (canonical correlation analysis) and PLSR (partial least squares regression) are powerful water quality modeling methods that provide better results than other classical o...PCA (principal component analysis), CCA (canonical correlation analysis) and PLSR (partial least squares regression) are powerful water quality modeling methods that provide better results than other classical ones such as multiple lineal regression. In this work they were used to model four water quality parameters at the Amadorio Reservoir (Alicante, Spain), namely: water temperature, dissolved oxygen, pH and conductivity. The main purpose of this study was to predict the future quality of the water and, thus improve its management. Raw data correspond to daily values of mean wind speed, mean wind direction, maximum wind speed, mean, minimum and maximum air temperature, number of hours below 7 ~C, relative humidity, global solar radiation, total precipitation, evapotranspiration, exploitation volume, inflow, outflow, filtration, depth and Julian day. Two years were considered (2004-2005) to get the calibration (186 days, 4,401 registrations) and validation (185 days, 4,573 registrations) datasets. Models were developed using either all the variables or a reduced subset; furthermore, PLSR yielded the best results.展开更多
Ultrasound assisted electrocatalytic process was used for enhancing decomposition efficiency of organic compounds. In this paper, the effect of ultrasonic frequency, ultrasonic intensity and pH value on 3-chlorophenol...Ultrasound assisted electrocatalytic process was used for enhancing decomposition efficiency of organic compounds. In this paper, the effect of ultrasonic frequency, ultrasonic intensity and pH value on 3-chlorophenol decomposition were studied. It was found that 3-chlorophenol in aqueous solution can be markedly decomposed by ultrasound assisted electrocatalytic process. The rate of decomposition increased with the increase of frequency, and low frequency is proper in the ultrasound assisted electrocatalytic system. The removal of 3-chlorophenol increased visibly with the increase of ultrasonic intensity until the intensity of 1.56 W/cm2. Alkaline condition is beneficial to 3-chlorophenol decomposition, the rate at pH 9.08 was higher than pH 2.48 and 6.85. The major intermediate formed during 3-chlorophenol decomposition was 2-chloro-pbenzoquinone, which was readily decomposed by ultrasound assisted electrocatalytic process.展开更多
文摘Chemically resistant anodic oxide layers were formed on pure aluminum substrates in oxalic acid-sulphuric acid bath.Acid dissolution tests of the obtained anodic layers were achieved in accordance with the ASTM B 680-80 specifications:35mL/L 85% H3PO4+20g/L CrO3 at 38℃.Influence of oxalic acid concentration,bath temperature and anodic current density on dissolution rate and coating ratio was examined,when the sulphuric acid concentration was maintained at 160g/L.It was found that chemically resistant and compact oxide layers were produced under low operational temperature (5℃) and high current densities (3A/dm^2).A beneficial effect was observed concerning the addition of oxalic acid (18g/L).The morphology and the composition of the anodic oxide layer were examined by scanning electron microscopy (SEM),atomic force microscopy (AFM) and glow-discharge optical emission spectroscopy (GDOES).
基金Supported by the Intensification of Research in Priority Areas Project (IRPA)Ministry of Science, Technology and Innovation,Malaysia (No.09-02-03-0101-EA0001).
文摘Andrographis paniculata Nees has been extensively used for traditional medicine and help against fever dysentery, diarrhoea, inflammation, and sore throat. In this study, andrographolide, the main component of this plant was extracted from the leaves of A. paniculata using supercritical carbon dioxide. The operating pressures were varied from 7.50 to 20MPa, the temperatures were varied from 30℃ to 60℃, and the flow rates were varied from 0.5 to 4ml.min^-1. The best extraction condition occurred at 10MPa, 40℃, and a flow rate of 2ml.min^-1 for a 3g sample of A. paniculata ground-dried leaves. The measured extraction rate was found to be about 0.0174g of andrographolide per gram of andrographolide present in the leaves per hour of operation. The future studies must focus on the interaction between the various operating parameters such as temperature, pressure, and flow rate of supercritical carbon dioxide.
文摘A series of glass are synthesized via a melt quenching technique based on the Li_(2)O-Ni O-P_(2)O_(5) system.The concentration of nickel oxide varies from 5%to 15%in molar fraction.XRD pattern verifies the amorphous nature of prepared glass samples with 5%,and 10%nickel oxide in molar fraction.While Li_(3)P and Ni_(2)P_(4)O_(12)phases are precipitated with a high nickel content up to 15%in molar fraction.As nickel is substituted for lithium,a systematic increase in glass transition temperature(T_(g))and glass softening temperatures(T_(s))is observed.This is greatly related to the increased structure,coherence in the glass network.Structural investigation showed that Ni_(2+) spectra are present in both octahedral and tetrahedral sites.Physical properties such as glass density((2.38±0.1)-(2.46±0.1)g/cm^(3)),and molar volume((42.28±0.1)-(39.15±0.1)cm^(3)/mol)are examined.The NiO/Li_(2)O replacements led to a decrease in the dissolution rate of the resultant amorphous materials from 1.53×10^(-5)to 3.20×10^(-6)g/(cm^(2)·min).Thermal expansion coefficients CTE of the glasses are diverse from 157×10^(-7) to 96×10^(-7)℃^(-1) over the temperature range of 25-250℃.The prepared glasses are expected to be useful as a low-temperature sealing material.
文摘PCA (principal component analysis), CCA (canonical correlation analysis) and PLSR (partial least squares regression) are powerful water quality modeling methods that provide better results than other classical ones such as multiple lineal regression. In this work they were used to model four water quality parameters at the Amadorio Reservoir (Alicante, Spain), namely: water temperature, dissolved oxygen, pH and conductivity. The main purpose of this study was to predict the future quality of the water and, thus improve its management. Raw data correspond to daily values of mean wind speed, mean wind direction, maximum wind speed, mean, minimum and maximum air temperature, number of hours below 7 ~C, relative humidity, global solar radiation, total precipitation, evapotranspiration, exploitation volume, inflow, outflow, filtration, depth and Julian day. Two years were considered (2004-2005) to get the calibration (186 days, 4,401 registrations) and validation (185 days, 4,573 registrations) datasets. Models were developed using either all the variables or a reduced subset; furthermore, PLSR yielded the best results.
文摘Ultrasound assisted electrocatalytic process was used for enhancing decomposition efficiency of organic compounds. In this paper, the effect of ultrasonic frequency, ultrasonic intensity and pH value on 3-chlorophenol decomposition were studied. It was found that 3-chlorophenol in aqueous solution can be markedly decomposed by ultrasound assisted electrocatalytic process. The rate of decomposition increased with the increase of frequency, and low frequency is proper in the ultrasound assisted electrocatalytic system. The removal of 3-chlorophenol increased visibly with the increase of ultrasonic intensity until the intensity of 1.56 W/cm2. Alkaline condition is beneficial to 3-chlorophenol decomposition, the rate at pH 9.08 was higher than pH 2.48 and 6.85. The major intermediate formed during 3-chlorophenol decomposition was 2-chloro-pbenzoquinone, which was readily decomposed by ultrasound assisted electrocatalytic process.