Climate change caused by the increasing emission of CO_(2)to the atmosphere has become a global concern.To ameliorate this issue,converting CO_(2)into valuable chemicals is highly desirable,enabling a sustainable low-...Climate change caused by the increasing emission of CO_(2)to the atmosphere has become a global concern.To ameliorate this issue,converting CO_(2)into valuable chemicals is highly desirable,enabling a sustainable low-carbon future.To this end,developing efficient catalytic systems for CO_(2)conversion has sparked intense interests from both academia and industry.Taking advantage of their highly porous structures and unique properties,metal−organic frameworks(MOFs)have shown great potential as heterogeneous catalysts for CO_(2)conversion.Various transformations involving CO_(2)have been accomplished over MOFs-based materials.Here we provide a comprehensive and up-to-date review on recent advances of heterogeneous CO_(2)thermocatalysis using MOFs,highlighting relationships between structures and properties.Special attention is given to the design strategies for improving the catalytic performance of MOFs.Avenues available to enrich the catalytic active sites in MOF structures are stressed and their respective impacts on CO_(2)conversion efficiency are presented.The synergistic effects between each active site within the structure of MOFs and derivatives are discussed.In the end,future perspectives and challenges in CO_(2)conversion by heterogeneous catalysis with MOFs are described.展开更多
Solar‐driven CO_(2)conversion to precious fossil fuels has been proved to become a potential way to decrease CO_(2)with producing renewable fuels,which mainly relies on photocatalysts with efficient charge separation...Solar‐driven CO_(2)conversion to precious fossil fuels has been proved to become a potential way to decrease CO_(2)with producing renewable fuels,which mainly relies on photocatalysts with efficient charge separation.In this work,a metal free heterostructure of covalent triazine framework(CTF)and graphite carbon nitride(g‐C_(3)N_(4),abbreviated as CN)is applied in the CO_(2)photoreduction for the first time.Detailed characterization methods such as photoluminescence(PL)and time‐resolved PL(TR‐PL)decay are utilized to reveal the photo‐induced carries separating process on g‐C_(3)N_(4)/CTF(CN/CTF)heterostructure.The introduced CTF demonstrated a great boosting photocatalytic activity for CN,bringing about the transform rates of CO_(2)to CO reaching 151.1μmol/(g·h)with a 30 h stabilization time,while negligible CH_(4)was detected.The optimal CN/CTF heterostructure could more efficiently separate charges with a lower probability of recombination under visible light irradiation,which made the photoreduction efficiency of CO_(2)to CO be 25.5 and 2.5 times higher than that of CTF and CN,respectively.This investigation is expected to offer a new thought for fabricating high‐efficiency photocatalyst without metal in solar‐energy‐driven CO_(2)reduction.展开更多
Developing highly active and durable electrocatalysts for the oxygen reduction reaction (ORR) is crucial to large-scale commercialization of fuel cells and metal-air batteries. Here we report a facile approach for t...Developing highly active and durable electrocatalysts for the oxygen reduction reaction (ORR) is crucial to large-scale commercialization of fuel cells and metal-air batteries. Here we report a facile approach for the synthesis of nitrogen and oxygen dual-doped meso-porous layer-structured carbon electrocatalyst embedded with graphitic carbon coated cobalt nanoparticles by direct pyrolysis of a layer-structured metal-organic framework. The elec- trocatalyst prepared at 800℃ exhibits comparable ORR performance to Pt/C catalysts but possesses superior stability to Pt/C catalysts. This synthetic approach provides new prospects in developing sustainable carbon-based electrocatalysts for electrochemical energy conversion devices.展开更多
文摘Climate change caused by the increasing emission of CO_(2)to the atmosphere has become a global concern.To ameliorate this issue,converting CO_(2)into valuable chemicals is highly desirable,enabling a sustainable low-carbon future.To this end,developing efficient catalytic systems for CO_(2)conversion has sparked intense interests from both academia and industry.Taking advantage of their highly porous structures and unique properties,metal−organic frameworks(MOFs)have shown great potential as heterogeneous catalysts for CO_(2)conversion.Various transformations involving CO_(2)have been accomplished over MOFs-based materials.Here we provide a comprehensive and up-to-date review on recent advances of heterogeneous CO_(2)thermocatalysis using MOFs,highlighting relationships between structures and properties.Special attention is given to the design strategies for improving the catalytic performance of MOFs.Avenues available to enrich the catalytic active sites in MOF structures are stressed and their respective impacts on CO_(2)conversion efficiency are presented.The synergistic effects between each active site within the structure of MOFs and derivatives are discussed.In the end,future perspectives and challenges in CO_(2)conversion by heterogeneous catalysis with MOFs are described.
文摘Solar‐driven CO_(2)conversion to precious fossil fuels has been proved to become a potential way to decrease CO_(2)with producing renewable fuels,which mainly relies on photocatalysts with efficient charge separation.In this work,a metal free heterostructure of covalent triazine framework(CTF)and graphite carbon nitride(g‐C_(3)N_(4),abbreviated as CN)is applied in the CO_(2)photoreduction for the first time.Detailed characterization methods such as photoluminescence(PL)and time‐resolved PL(TR‐PL)decay are utilized to reveal the photo‐induced carries separating process on g‐C_(3)N_(4)/CTF(CN/CTF)heterostructure.The introduced CTF demonstrated a great boosting photocatalytic activity for CN,bringing about the transform rates of CO_(2)to CO reaching 151.1μmol/(g·h)with a 30 h stabilization time,while negligible CH_(4)was detected.The optimal CN/CTF heterostructure could more efficiently separate charges with a lower probability of recombination under visible light irradiation,which made the photoreduction efficiency of CO_(2)to CO be 25.5 and 2.5 times higher than that of CTF and CN,respectively.This investigation is expected to offer a new thought for fabricating high‐efficiency photocatalyst without metal in solar‐energy‐driven CO_(2)reduction.
文摘Developing highly active and durable electrocatalysts for the oxygen reduction reaction (ORR) is crucial to large-scale commercialization of fuel cells and metal-air batteries. Here we report a facile approach for the synthesis of nitrogen and oxygen dual-doped meso-porous layer-structured carbon electrocatalyst embedded with graphitic carbon coated cobalt nanoparticles by direct pyrolysis of a layer-structured metal-organic framework. The elec- trocatalyst prepared at 800℃ exhibits comparable ORR performance to Pt/C catalysts but possesses superior stability to Pt/C catalysts. This synthetic approach provides new prospects in developing sustainable carbon-based electrocatalysts for electrochemical energy conversion devices.