Nitrogen-doped anatase TiO 2 microsheets with 65%(001) and 35%(101) exposed faces were fabricated by the hydrothermal method using TiN as precursor in the presence of HF and HCl. The samples were characterized by ...Nitrogen-doped anatase TiO 2 microsheets with 65%(001) and 35%(101) exposed faces were fabricated by the hydrothermal method using TiN as precursor in the presence of HF and HCl. The samples were characterized by scanning electron microscopy,X-ray diffraction,N2 adsorption,X-ray photoelectron spectroscopy,UV-visible spectroscopy,and electrochemical impedance spectroscopy. Their photocatalytic activity was evaluated using the photocatalytic reduction of CO2. The N-doped TiO 2 sample exhibited a much higher visible light photocatalytic activity for CO2 reduction than its precursor TiN and commercial TiO 2(P25). This was due to the synergistic effect of the formation of surface heterojunctions on the TiO 2 microsheet surface,enhanced visible light absorption by nitrogen-doping,and surface fluorination.展开更多
This study developed a facile approach for in situ synthesis of a Ti3+ self-doped mesoporous TiO 2photocatalyst by an evaporation-induced self-assembly method using TiC l3,water,and F127 as the titanium precursor,sol...This study developed a facile approach for in situ synthesis of a Ti3+ self-doped mesoporous TiO 2photocatalyst by an evaporation-induced self-assembly method using TiC l3,water,and F127 as the titanium precursor,solvent,and soft template agent,respectively. The as-prepared samples were investigated by X-ray diffraction,N2 adsorption-desorption measurements,ultraviolet-visible diffuse reflectance spectroscopy,electron paramagnetic resonance,and transmission electron microscopy. The influence of different reaction parameters such as the dosage of F127 and calcination temperature on the photocatalytic performance of the resulting products was evaluated. The optimized product exhibited high photocatalytic activity and stability in the oxidation of nitric oxide in air and photocatalytic degradation of methylene blue. The excellent photocatalytic performance of the Ti3+ self-doped mesoporous TiO 2 photocatalyst is attributed to the cooperation between the mesoporous structure and self-doped Ti3+ enhancing light absorption and effectively suppressing the recombination of photogenerated electrons and holes.展开更多
A different approach to synthesize visible‐light‐active sulfur(S)‐doped reduced titania(S‐TiO2‐x)using thiourea dioxide as both the S source and reductant was developed.The structure,morphology,and optical and el...A different approach to synthesize visible‐light‐active sulfur(S)‐doped reduced titania(S‐TiO2‐x)using thiourea dioxide as both the S source and reductant was developed.The structure,morphology,and optical and electronic properties of the as‐prepared S‐TiO2‐x samples were examined by multiple techniques,such as X‐ray diffraction,transmission electron microscopy,X‐ray photoelectron spectroscopy,ultraviolet‐visible diffuse reflectance spectroscopy,Brunauer‐Emmett‐Teller and photocurrent measurements,and electrochemical impedance spectroscopy.The photocatalytic activity of S‐TiO2‐x was evaluated by photodegradation of organic Rhodamine B under visible‐light irradiation.The degradation rate of Rhodamine B by S‐TiO2‐x obtained by calcination was about31,2.5,and3.6times higher than those of pure TiO2,pristine TiO2‐x,and S‐doped TiO2,respectively.In addition,the as‐prepared S‐TiO2‐x exhibited long‐term stable photocatalytic performance in the degradation of Rhodamine B under visible‐light illumination.This report reveals a new approach to prepare stable and highly efficient solar light‐driven photocatalysts for water purification.展开更多
Yellow-green-emitting Sr Si2O2N2:Eu2+phosphors were synthesized with Sr2Si O4:Eu2+as precursor.The effects of flux and the concentration of Eu2+on the crystal structure and luminescent properties of the phosphors were...Yellow-green-emitting Sr Si2O2N2:Eu2+phosphors were synthesized with Sr2Si O4:Eu2+as precursor.The effects of flux and the concentration of Eu2+on the crystal structure and luminescent properties of the phosphors were investigated.Results suggested that the optimal content of flux Na2CO3 was 1 wt%and the optimal doping concentration of Eu2+was 0.05 mol.The emission spectra showed the most intense peaks located at 535 nm which corresponded to the 4f65d→4f7 transition of Eu2+.The excitation spectra showed that these phosphors could be effectively excited by near-ultraviolet and blue light,whichwas consistent with the widely applied output wavelengths of near-ultraviolet and blue-white light-emitting diode(LED)chips.When the influence of flux on the luminescent properties of Sr Si2O2N2:Eu2+phosphor was analyzed,the X-ray diffraction(XRD)patterns indicated that the flux could help the crystallization of the phosphors.No other phases except the triclinic structure of Sr Si2O2N2 were formed.The thermal stability and the emission intensity of synthesized Sr Si2O2N2:Eu2+phosphor were examined and compared with commercial YAG yellow phosphors.All results indicate that the yellow-green-emitting phosphor is a suitable candidate for the fabrication of white LEDs.展开更多
基金supported by the National Basic Research Program of China(973 Program2013CB632402)+7 种基金the National Natural Science Foundation of China(513201050015137219051402025and 21433007)the Natural Science Foundation of Hubei Province(2015CFA001)the Fundamental Research Funds for the Central Universities(WUT:2014-VII-010)the Self-Determined and Innovative Research Funds of State Key Laboratory of Advanced Technology for Material Synthesis and ProcessingWuhan University of Technology(2013-ZD-1)~~
文摘Nitrogen-doped anatase TiO 2 microsheets with 65%(001) and 35%(101) exposed faces were fabricated by the hydrothermal method using TiN as precursor in the presence of HF and HCl. The samples were characterized by scanning electron microscopy,X-ray diffraction,N2 adsorption,X-ray photoelectron spectroscopy,UV-visible spectroscopy,and electrochemical impedance spectroscopy. Their photocatalytic activity was evaluated using the photocatalytic reduction of CO2. The N-doped TiO 2 sample exhibited a much higher visible light photocatalytic activity for CO2 reduction than its precursor TiN and commercial TiO 2(P25). This was due to the synergistic effect of the formation of surface heterojunctions on the TiO 2 microsheet surface,enhanced visible light absorption by nitrogen-doping,and surface fluorination.
基金supported by the National Natural Science Foundation of China(2147707921207090)+2 种基金the Shanghai Rising Star Program(15QA1403300)the Program for Changjiang Scholars and Innovative Research Team(IRT1269)the Specialized Research Fund for the Doctoral Program of Higher Education(20123127120009)~~
文摘This study developed a facile approach for in situ synthesis of a Ti3+ self-doped mesoporous TiO 2photocatalyst by an evaporation-induced self-assembly method using TiC l3,water,and F127 as the titanium precursor,solvent,and soft template agent,respectively. The as-prepared samples were investigated by X-ray diffraction,N2 adsorption-desorption measurements,ultraviolet-visible diffuse reflectance spectroscopy,electron paramagnetic resonance,and transmission electron microscopy. The influence of different reaction parameters such as the dosage of F127 and calcination temperature on the photocatalytic performance of the resulting products was evaluated. The optimized product exhibited high photocatalytic activity and stability in the oxidation of nitric oxide in air and photocatalytic degradation of methylene blue. The excellent photocatalytic performance of the Ti3+ self-doped mesoporous TiO 2 photocatalyst is attributed to the cooperation between the mesoporous structure and self-doped Ti3+ enhancing light absorption and effectively suppressing the recombination of photogenerated electrons and holes.
基金supported by the Science and Technology Development Plan Project of Shandong Province(2014GSF117015)the National Basic Research Program of China(973 program,2013CB632401)the National Natural Science Foundation of China(51402145)~~
文摘A different approach to synthesize visible‐light‐active sulfur(S)‐doped reduced titania(S‐TiO2‐x)using thiourea dioxide as both the S source and reductant was developed.The structure,morphology,and optical and electronic properties of the as‐prepared S‐TiO2‐x samples were examined by multiple techniques,such as X‐ray diffraction,transmission electron microscopy,X‐ray photoelectron spectroscopy,ultraviolet‐visible diffuse reflectance spectroscopy,Brunauer‐Emmett‐Teller and photocurrent measurements,and electrochemical impedance spectroscopy.The photocatalytic activity of S‐TiO2‐x was evaluated by photodegradation of organic Rhodamine B under visible‐light irradiation.The degradation rate of Rhodamine B by S‐TiO2‐x obtained by calcination was about31,2.5,and3.6times higher than those of pure TiO2,pristine TiO2‐x,and S‐doped TiO2,respectively.In addition,the as‐prepared S‐TiO2‐x exhibited long‐term stable photocatalytic performance in the degradation of Rhodamine B under visible‐light illumination.This report reveals a new approach to prepare stable and highly efficient solar light‐driven photocatalysts for water purification.
基金supported by the National Natural Science Foundation of China(Grant No.11204258)the National Science Foundation for Distinguished Young Scholars of Fujian Province(Grant No.2012J06024)+3 种基金the Program for New Century Excellent Talents in University of Fujian Province(Grant No.ZA14228)the Outstanding Young Scientific Research Personnel Training Plan in Colleges and Universities of Fujian Province(Grant No.JA13229)the Science and Technology Plan of Xiamen City(Grant No.3502Z20123040)the Ministry of Education in China Project of Humanities and Social Sciences(Grant No.11YJC820135)
文摘Yellow-green-emitting Sr Si2O2N2:Eu2+phosphors were synthesized with Sr2Si O4:Eu2+as precursor.The effects of flux and the concentration of Eu2+on the crystal structure and luminescent properties of the phosphors were investigated.Results suggested that the optimal content of flux Na2CO3 was 1 wt%and the optimal doping concentration of Eu2+was 0.05 mol.The emission spectra showed the most intense peaks located at 535 nm which corresponded to the 4f65d→4f7 transition of Eu2+.The excitation spectra showed that these phosphors could be effectively excited by near-ultraviolet and blue light,whichwas consistent with the widely applied output wavelengths of near-ultraviolet and blue-white light-emitting diode(LED)chips.When the influence of flux on the luminescent properties of Sr Si2O2N2:Eu2+phosphor was analyzed,the X-ray diffraction(XRD)patterns indicated that the flux could help the crystallization of the phosphors.No other phases except the triclinic structure of Sr Si2O2N2 were formed.The thermal stability and the emission intensity of synthesized Sr Si2O2N2:Eu2+phosphor were examined and compared with commercial YAG yellow phosphors.All results indicate that the yellow-green-emitting phosphor is a suitable candidate for the fabrication of white LEDs.