The oxidation of polyunsaturated fatty acids (PUFA) in emulsion with stirring and limited oxygen compensation was studied. A mathematical model of diffusion-oxidation was developed considering the mass transfer resi...The oxidation of polyunsaturated fatty acids (PUFA) in emulsion with stirring and limited oxygen compensation was studied. A mathematical model of diffusion-oxidation was developed considering the mass transfer resistance of a gas-liquid boundary, the resistance of the boundary layer from the emulsifier membrane, and the autocatalytic-type autoxidation reaction of PUFA. The dynamic mass transfer coefficient of the emulsifier membrane, k0, was introduced. The model was verified by comparing the predictions of the model with the experi- mental data. The results indicated that the model was in good agreement with the oxygen diffusion and linoleic acid oxidation in the emulsion, and showed good applicability in the prediction of the effect of the emulsifier type on the oxidation of PUFA in the emulsion. It indicated that the oxidation of PUFA in emulsions, with stirring and limited oxygen compensation from the atmosphere, was controlled mostly by mass transfer resistance from the emulsifier membrane.展开更多
The application of human induced oxygen consumption and carbon emission theory in urban region was summed up and on this base a new model of urban carbon and oxygen balance (UCOB) was constructed by calculating the ca...The application of human induced oxygen consumption and carbon emission theory in urban region was summed up and on this base a new model of urban carbon and oxygen balance (UCOB) was constructed by calculating the carbon and oxygen fluxes. The purpose was to highlight the role of vegetation in urban ecosystems and evaluate the effects of various human activities on urban annual oxygen consumption and carbon emission. Hopefully,the model would be helpful in theory to keep the regional balance of carbon and oxygen,and provide guidance and support for urban vegetation planning in the future. To test the UCOB model,the Jimei District of Xiamen City,Fujian Province,China,a very typical urban region,was selected as a case study. The results turn out that Jimei′s vegetation service in oxygen emission and carbon sequestration could not meet the demand of the urban population,and more than 31.49 times of vegetation area should be added to meet the whole oxygen consumption in Jimei while 9.60 times of vegetation area are needed to meet the carbon sequestration targets. The results show that the new UCOB model is of a great potential to be applied to quantitative planning of urban vegetation and regional eco-compensation mechanisms.展开更多
基金Supported by the National Natural Science Foundation of China (20401007).
文摘The oxidation of polyunsaturated fatty acids (PUFA) in emulsion with stirring and limited oxygen compensation was studied. A mathematical model of diffusion-oxidation was developed considering the mass transfer resistance of a gas-liquid boundary, the resistance of the boundary layer from the emulsifier membrane, and the autocatalytic-type autoxidation reaction of PUFA. The dynamic mass transfer coefficient of the emulsifier membrane, k0, was introduced. The model was verified by comparing the predictions of the model with the experi- mental data. The results indicated that the model was in good agreement with the oxygen diffusion and linoleic acid oxidation in the emulsion, and showed good applicability in the prediction of the effect of the emulsifier type on the oxidation of PUFA in the emulsion. It indicated that the oxidation of PUFA in emulsions, with stirring and limited oxygen compensation from the atmosphere, was controlled mostly by mass transfer resistance from the emulsifier membrane.
基金Under the auspices of Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-YW-450, KZCX2-YW-422)
文摘The application of human induced oxygen consumption and carbon emission theory in urban region was summed up and on this base a new model of urban carbon and oxygen balance (UCOB) was constructed by calculating the carbon and oxygen fluxes. The purpose was to highlight the role of vegetation in urban ecosystems and evaluate the effects of various human activities on urban annual oxygen consumption and carbon emission. Hopefully,the model would be helpful in theory to keep the regional balance of carbon and oxygen,and provide guidance and support for urban vegetation planning in the future. To test the UCOB model,the Jimei District of Xiamen City,Fujian Province,China,a very typical urban region,was selected as a case study. The results turn out that Jimei′s vegetation service in oxygen emission and carbon sequestration could not meet the demand of the urban population,and more than 31.49 times of vegetation area should be added to meet the whole oxygen consumption in Jimei while 9.60 times of vegetation area are needed to meet the carbon sequestration targets. The results show that the new UCOB model is of a great potential to be applied to quantitative planning of urban vegetation and regional eco-compensation mechanisms.