The development of new catalytic techniques for wastewater treatment has long attracted much attention from industrial and academic communities.However,because of catalyst leaching during degradation,catalysts can be ...The development of new catalytic techniques for wastewater treatment has long attracted much attention from industrial and academic communities.However,because of catalyst leaching during degradation,catalysts can be short lived,and therefore expensive,and unsuitable for use in wastewater treatment.In this work,we developed a bimetallic CuO-Co3O4@γ-Al2O3 catalyst for phenol degradation with bicarbonate-activated H2O2.The weakly basic environment provided by the bicarbonate buffer greatly suppresses leaching of active Cu and Co metal ions from the catalyst.X-ray diffraction and X-ray photoelectron spectroscopy results showed interactions between Cu and Co ions in the CuO-Co3O4@γ-Al2O3 catalyst,and these improve the catalytic activity in phenol degradation.Mechanistic studies using different radical scavengers showed that superoxide and hydroxyl radicals both played significant roles in phenol degradation,whereas singlet oxygen was less important.展开更多
Zeolite-13X-supported Fe(Fe/zeolite-13X) catalysts with various Fe contents were prepared by the wet impregnation method.The catalysts were characterized by N2 adsorption-desorption isotherms to estimate the Brunaue...Zeolite-13X-supported Fe(Fe/zeolite-13X) catalysts with various Fe contents were prepared by the wet impregnation method.The catalysts were characterized by N2 adsorption-desorption isotherms to estimate the Brunauer-Emmett-Teller surface areas and Barrett-Joyner-Hanlenda pore size distributions.X-ray diffraction,scanning electron microscopy,temperature-programmed reduction,and temperature-programmed desorption of NH3 were used to investigate the textural properties of the Fe/zeolite-13 X catalysts.Their catalytic activities were determined for the complete oxidation of1,4-dioxane using air as the oxidant in a fixed-bed flow reactor in the temperature range 100-400℃.The influences of various process parameters,such as reaction temperature,metal loading,and gas hourly space velocity(GHSV),on the dioxane removal efficiency by catalytic oxidation were investigated.The stability of the catalyst was tested at 400℃ by performing time-on-stream analysis for 50 h.The Fe/zeolite-13 X catalyst with 6 wt%Fe exhibited the best catalytic activity among the Fe/zeolite-13 X catalysts at 400℃ and a GHSV of 24000 h^(-1),with 97%dioxane conversion and95%selectivity for the formation of carbon oxides(CO and CO2).Trace amounts( 3%) of acetaldehyde,ethylene glycol monoformate,ethylene glycol diformate,1,4-dioxane-2-ol,1,4-dioxane-2-one,and 2-methoxy-1,3-dioxalane were also formed as degradation products.A plausible degradation mechanism is proposed based on the products identified by GC-MS analysis.展开更多
A PbO2/Sb-SnO2/TiO2 nanotube array composite electrode was successfully synthesized and its electrochemical oxidation properties were investigated.Field-emission scanning electron microscopy(FE-SEM)and X-ray diffracti...A PbO2/Sb-SnO2/TiO2 nanotube array composite electrode was successfully synthesized and its electrochemical oxidation properties were investigated.Field-emission scanning electron microscopy(FE-SEM)and X-ray diffraction(XRD)results showed that the PbO2 coating was composed of anα-PbO2 inner layer and aβ-PbO2 outer layer.Accelerated life measurement indicated that the composite electrode had a lifetime of 815 h.Rhodamine B(RhB)was employed as a model pollutant to analyze the electrocatalytic activity of the electrode.The effects of initial RhB concentration,current density,initial pH,temperature,and chloride ion concentration on the electrochemical oxidation were investigated in detail.Inductively coupled plasma atomic emission spectroscopy(ICP-AES)results suggested that the concentration of leached Pb^2+in the electrolyte during the electrocatalytic oxidation process can be neglected.Finally,the degradation mechanism during the electrocatalytic oxidation process was proposed based on the results of solid-phase micro-extraction-gas chromatography-mass spectrometry(SPME-GC-MS).The high electrocatalytic performance of the composite electrode makes it a promising anode for the treatment of organic pollutants in aqueous solution.展开更多
Dissociation of methyl nitrite is the first step during CO catalytic coupling to dimethyl oxalate followed by hydrogenation to ethyl glycol in a typical coal to liquid process. In this work, the first-principle calcul...Dissociation of methyl nitrite is the first step during CO catalytic coupling to dimethyl oxalate followed by hydrogenation to ethyl glycol in a typical coal to liquid process. In this work, the first-principle calculations based on density functional theory were performed to explore the reaction mechanism for the non-catalytic dissociation of methyl nitrite in the gas phase and the catalytic dissociation of methyl nitrite on Pd(111) surface since palladium supported on alpha-alumina is the most effective catalyst for the coupling. For the non-catalytic case, the calculated results show that the CH_3O–NO bond will break with a bond energy of 1.91 eV, and the produced CH_3O radicals easily decompose to formaldehyde, while the further dissociation of formaldehyde in the gas phase is difficult due to the strong C–H bond. On the other hand, the catalytic dissociation of methyl nitrite on Pd(111) to the adsorbed CH_3O and NO takes place with a small energy barrier of 0.03 eV. The calculated activation energies along the proposed reaction pathways indicate that(i) at low coverage, a successive dehydrogenation of the adsorbed CH_3O to CO and H is favored while(ii) at high coverage, hydrogenation of CH_3O to methanol and carbonylation of CH_3O to methyl formate are more preferred. On the basis of the proposed reaction mechanism,two meaningful ways are proposed to suppress the dissociation of methyl nitrate during the CO catalytic coupling to dimethyl oxalate.展开更多
Determination of probable mechanism function and kinetic parameters is important to hydrometallurgical kinetics.In this work,the most probable mechanism function and kinetic parameters of gibbsite dissolution in NaOH ...Determination of probable mechanism function and kinetic parameters is important to hydrometallurgical kinetics.In this work,the most probable mechanism function and kinetic parameters of gibbsite dissolution in NaOH solution are studied.The sample,the mixture of synthetic gibbsite and sodium hydroxide solution,was scanned in high-pressure differential scanning calorimetry(DSC) equipment with the heating rate of 10 K·min-1. Integral equation and differential equation of non-isothermal kinetics were solved to fit the data related to DSC curve.According to the calculation results,the most probable mechanism function for pure synthetic gibbsite dissolution in sodium hydroxide solution is presented based on the optimum procedure in the database of the mechanism function.The apparent activation energy obtained is(75±1) kJ·mol-1,the frequency factor is 10 8±1mol·s-1,and the reaction is a second order reaction.展开更多
The degradation of p-nitrotoluene by O3/H2O2 process in a bubble contact column was investigated. Effects of the molar ratio of hydrogen peroxide to ozone,pH value and t-butanol on the oxidation process were discussed...The degradation of p-nitrotoluene by O3/H2O2 process in a bubble contact column was investigated. Effects of the molar ratio of hydrogen peroxide to ozone,pH value and t-butanol on the oxidation process were discussed. It was found that the proper H2O2/O3 molar ratio for the degradation of p-nitrotoluene was around 0.6, different pH values and the presence of t-butanol highly influenced the removal efficiency of p-nitrotoluene. 5-methyl-2-nitrophenol, 2-methyl-5-nitrophenol, (4-nitrophenyl) methanol, 5-(hydroxymethyl)-2-nitro phenol, acetic acid, 2-methylpropane diacid and 2-(hydroxylmethyl)propane diacid were identified as degradation intermediates and products through GC-MS. Radical reaction mechanism and degradation pathway were proposed based on the results of experiments. It is deduced that the benzene ring of p-nitrotoluene can be only destroyed by hydroxyl radicals through a polyhydroxy intermediate pathway. Then unstable polyhydroxy intermediates can be oxidized to different acids with low molecular weight rapidly.展开更多
The mechanism of the action of copper-dependent quercetin 2,3-dioxygenase (2,3QD) has been investigated by means of hy- brid density functional theory. The 2,3QD enzyme cleaves the O-heterocycle of a quercetin by in...The mechanism of the action of copper-dependent quercetin 2,3-dioxygenase (2,3QD) has been investigated by means of hy- brid density functional theory. The 2,3QD enzyme cleaves the O-heterocycle of a quercetin by incorporation of both oxygen atoms into the substrate and releases carbon monoxide. The calculations show that dioxygen attack on the copper complex is energetically favorable. The adduct has a possible near-degeneracy of states between [Cu2+-(substrate H+)] and [Cu+-(sub- strate-H). ], and in addition the pyramidalized C2 atom is ideally suited for forming a dioxygembridged structure. In the next step, the C3-C4 bond is cleaved and intermediate lnt5 is formed via transition state TS4. Finally, the Oa-Ob and C2-C3 bonds are cleaved, and CO is released in one concerted transition state (TS5) with the barrier of 63.25 and 61.91 k J/tool in the gas phase and protein environments, respectively. On the basis of our proposed reaction mechanism, this is the rate-limiting step of the whole catalytic cycle and is strongly driven by a relatively large exothermicity of 100.86 kJ/mol. Our work provides some valuable fundamental insights into the behavior of this enzyme.展开更多
基金supported by the National Natural Science Foundation of China(21273086)Chutian Scholar Foundation from Hubei Province,China~~
文摘The development of new catalytic techniques for wastewater treatment has long attracted much attention from industrial and academic communities.However,because of catalyst leaching during degradation,catalysts can be short lived,and therefore expensive,and unsuitable for use in wastewater treatment.In this work,we developed a bimetallic CuO-Co3O4@γ-Al2O3 catalyst for phenol degradation with bicarbonate-activated H2O2.The weakly basic environment provided by the bicarbonate buffer greatly suppresses leaching of active Cu and Co metal ions from the catalyst.X-ray diffraction and X-ray photoelectron spectroscopy results showed interactions between Cu and Co ions in the CuO-Co3O4@γ-Al2O3 catalyst,and these improve the catalytic activity in phenol degradation.Mechanistic studies using different radical scavengers showed that superoxide and hydroxyl radicals both played significant roles in phenol degradation,whereas singlet oxygen was less important.
基金supported by the Director,DRDE(DRDO),Ministry of Defence,India~~
文摘Zeolite-13X-supported Fe(Fe/zeolite-13X) catalysts with various Fe contents were prepared by the wet impregnation method.The catalysts were characterized by N2 adsorption-desorption isotherms to estimate the Brunauer-Emmett-Teller surface areas and Barrett-Joyner-Hanlenda pore size distributions.X-ray diffraction,scanning electron microscopy,temperature-programmed reduction,and temperature-programmed desorption of NH3 were used to investigate the textural properties of the Fe/zeolite-13 X catalysts.Their catalytic activities were determined for the complete oxidation of1,4-dioxane using air as the oxidant in a fixed-bed flow reactor in the temperature range 100-400℃.The influences of various process parameters,such as reaction temperature,metal loading,and gas hourly space velocity(GHSV),on the dioxane removal efficiency by catalytic oxidation were investigated.The stability of the catalyst was tested at 400℃ by performing time-on-stream analysis for 50 h.The Fe/zeolite-13 X catalyst with 6 wt%Fe exhibited the best catalytic activity among the Fe/zeolite-13 X catalysts at 400℃ and a GHSV of 24000 h^(-1),with 97%dioxane conversion and95%selectivity for the formation of carbon oxides(CO and CO2).Trace amounts( 3%) of acetaldehyde,ethylene glycol monoformate,ethylene glycol diformate,1,4-dioxane-2-ol,1,4-dioxane-2-one,and 2-methoxy-1,3-dioxalane were also formed as degradation products.A plausible degradation mechanism is proposed based on the products identified by GC-MS analysis.
基金supported by the National Natural Science Foundation of China(21507104)Natural Science Basic Research Plan in Shaanxi Province of China(2017JM2015)~~
文摘A PbO2/Sb-SnO2/TiO2 nanotube array composite electrode was successfully synthesized and its electrochemical oxidation properties were investigated.Field-emission scanning electron microscopy(FE-SEM)and X-ray diffraction(XRD)results showed that the PbO2 coating was composed of anα-PbO2 inner layer and aβ-PbO2 outer layer.Accelerated life measurement indicated that the composite electrode had a lifetime of 815 h.Rhodamine B(RhB)was employed as a model pollutant to analyze the electrocatalytic activity of the electrode.The effects of initial RhB concentration,current density,initial pH,temperature,and chloride ion concentration on the electrochemical oxidation were investigated in detail.Inductively coupled plasma atomic emission spectroscopy(ICP-AES)results suggested that the concentration of leached Pb^2+in the electrolyte during the electrocatalytic oxidation process can be neglected.Finally,the degradation mechanism during the electrocatalytic oxidation process was proposed based on the results of solid-phase micro-extraction-gas chromatography-mass spectrometry(SPME-GC-MS).The high electrocatalytic performance of the composite electrode makes it a promising anode for the treatment of organic pollutants in aqueous solution.
基金Supported by the National Natural Science Foundation of China(21303102)China Postdoctoral Science Foundation funded project(2012M520900 and 2013T60449)
文摘Dissociation of methyl nitrite is the first step during CO catalytic coupling to dimethyl oxalate followed by hydrogenation to ethyl glycol in a typical coal to liquid process. In this work, the first-principle calculations based on density functional theory were performed to explore the reaction mechanism for the non-catalytic dissociation of methyl nitrite in the gas phase and the catalytic dissociation of methyl nitrite on Pd(111) surface since palladium supported on alpha-alumina is the most effective catalyst for the coupling. For the non-catalytic case, the calculated results show that the CH_3O–NO bond will break with a bond energy of 1.91 eV, and the produced CH_3O radicals easily decompose to formaldehyde, while the further dissociation of formaldehyde in the gas phase is difficult due to the strong C–H bond. On the other hand, the catalytic dissociation of methyl nitrite on Pd(111) to the adsorbed CH_3O and NO takes place with a small energy barrier of 0.03 eV. The calculated activation energies along the proposed reaction pathways indicate that(i) at low coverage, a successive dehydrogenation of the adsorbed CH_3O to CO and H is favored while(ii) at high coverage, hydrogenation of CH_3O to methanol and carbonylation of CH_3O to methyl formate are more preferred. On the basis of the proposed reaction mechanism,two meaningful ways are proposed to suppress the dissociation of methyl nitrate during the CO catalytic coupling to dimethyl oxalate.
基金Supported by the Research Fund for the Doctoral Program of Higher Education(20050145029)the Science and Technology Talents Fund for Excellent Youth of Liaoning Province(2005221012)
文摘Determination of probable mechanism function and kinetic parameters is important to hydrometallurgical kinetics.In this work,the most probable mechanism function and kinetic parameters of gibbsite dissolution in NaOH solution are studied.The sample,the mixture of synthetic gibbsite and sodium hydroxide solution,was scanned in high-pressure differential scanning calorimetry(DSC) equipment with the heating rate of 10 K·min-1. Integral equation and differential equation of non-isothermal kinetics were solved to fit the data related to DSC curve.According to the calculation results,the most probable mechanism function for pure synthetic gibbsite dissolution in sodium hydroxide solution is presented based on the optimum procedure in the database of the mechanism function.The apparent activation energy obtained is(75±1) kJ·mol-1,the frequency factor is 10 8±1mol·s-1,and the reaction is a second order reaction.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50378028)
文摘The degradation of p-nitrotoluene by O3/H2O2 process in a bubble contact column was investigated. Effects of the molar ratio of hydrogen peroxide to ozone,pH value and t-butanol on the oxidation process were discussed. It was found that the proper H2O2/O3 molar ratio for the degradation of p-nitrotoluene was around 0.6, different pH values and the presence of t-butanol highly influenced the removal efficiency of p-nitrotoluene. 5-methyl-2-nitrophenol, 2-methyl-5-nitrophenol, (4-nitrophenyl) methanol, 5-(hydroxymethyl)-2-nitro phenol, acetic acid, 2-methylpropane diacid and 2-(hydroxylmethyl)propane diacid were identified as degradation intermediates and products through GC-MS. Radical reaction mechanism and degradation pathway were proposed based on the results of experiments. It is deduced that the benzene ring of p-nitrotoluene can be only destroyed by hydroxyl radicals through a polyhydroxy intermediate pathway. Then unstable polyhydroxy intermediates can be oxidized to different acids with low molecular weight rapidly.
基金supported by the National Natural Science Foundation of China (21073164,20673098)the Natural Science Foundation of Zhejiang Province (Y4100620)the Research Foundation of the Education Bureau of Zhejiang Province (Y200906517)
文摘The mechanism of the action of copper-dependent quercetin 2,3-dioxygenase (2,3QD) has been investigated by means of hy- brid density functional theory. The 2,3QD enzyme cleaves the O-heterocycle of a quercetin by incorporation of both oxygen atoms into the substrate and releases carbon monoxide. The calculations show that dioxygen attack on the copper complex is energetically favorable. The adduct has a possible near-degeneracy of states between [Cu2+-(substrate H+)] and [Cu+-(sub- strate-H). ], and in addition the pyramidalized C2 atom is ideally suited for forming a dioxygembridged structure. In the next step, the C3-C4 bond is cleaved and intermediate lnt5 is formed via transition state TS4. Finally, the Oa-Ob and C2-C3 bonds are cleaved, and CO is released in one concerted transition state (TS5) with the barrier of 63.25 and 61.91 k J/tool in the gas phase and protein environments, respectively. On the basis of our proposed reaction mechanism, this is the rate-limiting step of the whole catalytic cycle and is strongly driven by a relatively large exothermicity of 100.86 kJ/mol. Our work provides some valuable fundamental insights into the behavior of this enzyme.