Most lowlands in Northeast Thailand(Isaan region)are cultivated with rice and large areas are affected by salinity, which drastically limits rice production.A field experiment was conducted during the 2003 rainy seaso...Most lowlands in Northeast Thailand(Isaan region)are cultivated with rice and large areas are affected by salinity, which drastically limits rice production.A field experiment was conducted during the 2003 rainy season to explore the interactions between salinity and land management in two fields representative of two farming practices:an intensively managed plot with organic inputs and efficient water management,and one without organic matter addition.Field measurements,including pH,Eh,electrical conductivity(EC),and soil solution chemistry,were performed at three depths, with a particular focus on Fe dynamics,inside and outside saline patches. High reducing conditions appeared after flooding particularly in plots receiving organic matter and reduction processes leading to oxide reduction and to the release of Fe and,to a lesser extend,Mn to the soil solution.Oxide reduction led to the consumption of H^+ and the more the Fe reduction was,the higher the pH was,up to 6.5.Formation of hydroxy-green rust were likely to be at the origin of the pH stabilization.In the absence of organic amendments,high salinity prevented the establishment of the reduction processes and pH value remained around 4.Even under high reduction conditions,the Fe concentrations in the soil solution were below commonly observed toxic values and the amended plot had better rice production yield.展开更多
Lysozyme reaction was developed as a novel technique for minimizing the amount of excess sludge in the sequential batch reactor(SBR).In the present work,excess sludge taken from a SBR system was treated by lysozyme re...Lysozyme reaction was developed as a novel technique for minimizing the amount of excess sludge in the sequential batch reactor(SBR).In the present work,excess sludge taken from a SBR system was treated by lysozyme reaction and then returned to the reactor.The quality of the effluent water and characteristics of the activated sludge in the SBR were analyzed to determine the effectiveness of the reduction process.The results show that excess sludge production could be reduced to almost 100%in the first30 d of operation and could be reduced to further by 40%in the succeeding 20 d or so.In these time periods,the average removal efficiencies of the chemical oxygen demand and total nitrogen are 87.38%and 52.78%,respectively,whereas the average total phosphorous in the effluent is nearly 17.18%greater than that of the effluent of the reference system.After 50 d of operation,the sludge floc size is in the range of 20 to 80μm,which was smaller than the size prior to the start of the hydrolysis and the ratio of mixed liquor volatile suspended solids/mixed liquor suspended solids increases from 86%to 90%.展开更多
The influence of magnetic field on the redox potentials of the Nernst equation. The author offered the new formula Nernst equation in a magnetic field. Our proposed formula takes into account the influence of the magn...The influence of magnetic field on the redox potentials of the Nernst equation. The author offered the new formula Nernst equation in a magnetic field. Our proposed formula takes into account the influence of the magnetic field on the redox processes.展开更多
For efficient energy consumption and control of effluent quality, the cycle duration for a sequencing batch reactor (SBR) needs to be adjusted by real-time control according to the characteristics and loading of waste...For efficient energy consumption and control of effluent quality, the cycle duration for a sequencing batch reactor (SBR) needs to be adjusted by real-time control according to the characteristics and loading of waste-water. In this study, an on-line information system for phosphorus removal processes was established. Based on the analysis for four systems with different ecological community structures and two operation modes, anaerobic-aerobic process and anaerobic-anaerobic process, the characteristic patterns of oxidation-reduction potential (ORP) and pH were related to phosphorous dynamics in the anaerobic, anoxic and aerobic phases, for determination of the end of phosphorous removal. In the operation mode of anaerobic-aerobic process, the pH profile in the anaerobic phase was used to estimate the relative amount of phosphorous accumulating organisms (PAOs) and glycogen accumulat-ing organisms (GAOs), which is beneficial to early detection of ecology community shifts. The on-line sensor val-ues of pH and ORP may be used as the parameters to adjust the duration for phosphorous removal and community shifts to cope with influent variations and maintain appropriate operation conditions.展开更多
The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic...The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic deposition and the surface morphologies and compositions of electrodes were determined by energy-dispersive X-ray(EDX) and scanning electron microscopy(SEM). Cyclic voltammetry and chronoamperometric methods were employed to characterize the oxidation process and its kinetics. Voltammetric studies exhibit one pair of well-defined redox peaks, which is ascribed to the redox process of the nickel and followed by the greatly enhanced current response of the anodic peak in the presence of contraflam and a decrease in the corresponding cathodic current peak. This indicates that the immobilized redox mediator on the electrode surface was oxidized contraflam via an electrocatalytic mechanism. The catalytic currents increased linearly with the concentration of contraflam in the range of 0.25– 1.5 mmol/L. The anodic peak currents were linearly proportional to the square root of scan rate. This behaviour is the characteristic of a diffusion-controlled process. The determination of contraflam in capsules is applied satisfactorily by modified electrode.展开更多
The nitrite accumulation in the denitrification process is investigated with sequencing batch reactor (SBR) treating pre-treated landfill leachate in anoxic/anaerobic up-flow anaerobic sludge bed I(UASB). Nitrite ...The nitrite accumulation in the denitrification process is investigated with sequencing batch reactor (SBR) treating pre-treated landfill leachate in anoxic/anaerobic up-flow anaerobic sludge bed I(UASB). Nitrite accumulates obviously at different initial nitrate concentrations (64.9,54.8,49.3 and 29.5 mg·L^-1 ) and low temperatures, and the two break points on the oxidation-reduction potential (ORP) profile indicate the completion of nitrate and nitrite reduction. Usually, the nitrate reduction rate is used as the sole parameter to characterize the denitrification rate, and nitrite is not even measured. For accuracy, the total oxidized nitrogen (nitrate + nitrite) is used as a measure, though details characterizing the process may be overlooked. Additionally, batch tests are conducted to investigate the effects of C/N ratios and types of carbon sources on the nitrite accumulation during the denitrification. It is observed that carbon source is sufficient for the reduction of nitrate to nitrite, but for further reduction of nitrite to nitrogen gas, is deficient when C/N is below the theoretical critical level of 3.75 based on the stoichiometry of denitrification. Five carbon sources used in this work, except for glucose, may cause the nitrite accumulation. From experimental results and cited literature, it is concluded that Alcaligene species may be contained in the SBR activated-sludge system.展开更多
Chalcopyrite dissolution was evaluated by bioleaching and electrochemical experiments with thermophile A. manzaensis(Acidianus manzaensis) and mesophile L. ferriphilum(Leptospirillum ferriphium) cultures at 65 ℃ ...Chalcopyrite dissolution was evaluated by bioleaching and electrochemical experiments with thermophile A. manzaensis(Acidianus manzaensis) and mesophile L. ferriphilum(Leptospirillum ferriphium) cultures at 65 ℃ and 40 ℃, respectively. It was investigated that the bioleaching of chalcopyrite was stepwise. It was reduced to Cu2 S at a lower redox potential locating in the whole bioleaching process by A. manzaensis at high temperature while only at initial days of bioleaching by L. ferriphilum at a relative low temperature. No reduced product was detected when the redox potential was beyond a high level(e.g., 550 m V(vs SCE)) bioleached by L. ferriphilum. Chalcopyrite bioleaching efficiency was substantially improved bioleached by A. manaensis compared to that by L. ferriphilum, which was mainly attributed to the reduction reaction occurring during bioleaching. The reductive intermediate Cu2 S was more amenable to oxidation than chalcopyrite, causing enhanced copper extraction.展开更多
Rare earth elements(REEs) can record geologic and geochemical processes. We studied two granitic regolith profiles from different climatic zones in eastern Tibetan Plateau and found that(1)∑ RREEs ranged from119.65 t...Rare earth elements(REEs) can record geologic and geochemical processes. We studied two granitic regolith profiles from different climatic zones in eastern Tibetan Plateau and found that(1)∑ RREEs ranged from119.65 to 275.33 mg/kg in profile ND and5.11–474.55 mg/kg in profile GTC, with average values of205.79 and 161 mg/kg, respectively. ∑RREEs was higher in accumulation horizon and semi-regolith;(2) Influenced by climate, the fractionation of light and heavy REEs(LREEs and HREEs) varied during weathering. The ratio of LREEs/HREEs in pedosphere was higher than semi-regolith in tropical profile;(3) A negative Eu anomaly in both profiles was the result of bedrock weathering. A positive Ce anomaly was observed in all layers of profile ND, and only in the upper 100 cm of profile GTC. This indicates that redox conditions along the regolith profile varied considerably with climate.(4) Normalized by chondrite,LREEs accumulated much more than HREEs; REE distribution curves were right-leaning with a V-type Eu anomaly in both profiles.展开更多
The aim of this work is to evaluate the feasibility of applying the technology of oxidation-reduction potential (ORP) control on the municipal wastewater treatment system for nitrogen and phosphorus removal. Meanwhi...The aim of this work is to evaluate the feasibility of applying the technology of oxidation-reduction potential (ORP) control on the municipal wastewater treatment system for nitrogen and phosphorus removal. Meanwhile the relation between the optimal ORP ( ORPopt ) and influent C/N ratio was evaluated, in which the influent chemical oxygen demand ( COD ) concentration was stabilized at (290 ± 10 ) mg/L, the influent total phosphorus (TP) concentration was stabilized at (7.0 ± 0.5 ) mg/L. The results indicated that: (1) the ORP in the second anoxic zone had effect on nitrogen and phosphorus removal capability, and the average percentages of phosphorus uptake in ANO2 zone ( ηa ) increased with increasing ORP, i. e. , increasing from 12. 0% at - 143 mV to 22.0%,30.0%,37.0%, and45.0% at -123, -111, -105 and -95 mV, respectively; (2) the ORPopt as function of influent C/N ratio could be calculated by the equation: y ffi 252. 73e〈 -x/3.39) _ 131.01 ; the maximum percentage of phosphorus uptake in ANO2 as function of the ORPopt could be calculated by the equation: y ffi -0.49e(x/15.58) + 1. 51. The ORPopt was the important process control parameter that must be optimized for operation of enhanced biological phosphorus removal ( EBPR ) system. Moreover, ORP sensor is very simple, and the industrial applications of this strategy is practical.展开更多
In order to investigate the effect of plant density ofPotamogeton crispus L. on the remediation of sedi- ments contaminated by polycyclic aromatic hydrocarbons, a 54-day experiment with four plant densities (642, 1 6...In order to investigate the effect of plant density ofPotamogeton crispus L. on the remediation of sedi- ments contaminated by polycyclic aromatic hydrocarbons, a 54-day experiment with four plant densities (642, 1 604, 2 567 and 3 530 plants/m^2) was conducted. The results showed higher plant density with slower plant growth rate. Surface area per plant was the most sensitive root parameter to plant density. At the end of the 54-day experi- ment, planting P. crispus enhanced the dissipation ratios of phenanthrene and pyrene in sediments by 6.5%-26,2% and 0.95%-13.6%, respectively. The dissipation increment increased with increasing plant density. Plant uptake accounted for only a small portion of the dissipation increments. Furthermore, P. crispus could evidently improve sediment redox potentials, and strong positive correlations between root surface area and the redox potential as well as between the redox potentials and the dissipation ratios of phenanthrene and pyrene were obtained, indicating that the oxygen released by the roots ofP. crispus might be the main mechanism by which P. crispus enhanced the dis- sipation of PAHs in sediments.展开更多
Controlling the biogas fermentation process is the key for maintaining stable operation of biogas system and increasing gas yield. Aiming at features of biogas fermentation process and difficulties of control, a pract...Controlling the biogas fermentation process is the key for maintaining stable operation of biogas system and increasing gas yield. Aiming at features of biogas fermentation process and difficulties of control, a practical control scheme is proposed combining the abundant experience of biogas experts. And it discussed the structural design and hardware configuration of the expert control system, established the database and role base, and designed the control strategy of production system inference. The design scheme with ZigBee and PDA technology as core is employed so as to solve problems of environmental factor detection and data transfer management. The test result shows that the deviation of temperature is controlled within ± 0.9℃, the deviation of pH is controlled within ±0.3, the deviation of oxidation-reduction potential is controlled within ±30mV, the deviation of gas production is controlled within ± 9mL and that of methane concentration is controlled within ±4.5%. This system is easily expandable and applicable to biogas engineering at various scales.展开更多
The possibilities of changes of ORP (oxidation-reduction water potential) with the help of chemical and physical-chemical methods were explored. Distillation and membrane technology were used as physical-chemical me...The possibilities of changes of ORP (oxidation-reduction water potential) with the help of chemical and physical-chemical methods were explored. Distillation and membrane technology were used as physical-chemical methods. In the case of application of chemical methods well-soluble substances were added into water. It was ascertained that the application of membrane technology makes it possible to obtain antioxidant water with negative ORR. Different energy change in a time unit can be applied in a whole number of technological processes and reveals new possibilities for many branches of industry.展开更多
Iron and manganese oxides are common components of soils. They frequently occur in nodules constituting important soil sorbents and play a crucial role in a number of chemical reactions in the soil environment. In add...Iron and manganese oxides are common components of soils. They frequently occur in nodules constituting important soil sorbents and play a crucial role in a number of chemical reactions in the soil environment. In addition, the oxides are very sensitive to environmental changes (moisture, pH, Eh) constituting important indicators of soil-forming processes and water movement in the landscape. The objectives of the study were: i) to examine the distribution and size of Fe-Mn nodules in Albeluvisols containing a fragipan horizon; ii) to determine the morphology and chemical composition of the nodules, and iii) to estimate the effect of the fragipan horizon on water movement within the soil profile. An investigation was carried out on five soil profiles containing a fragipan horizon and classified as Fragic Albeluvisols within the Carpathian Foothills in Poland. In the Albeluvisols studied, the maximum concentration of Fe-Mn nodules occurred in the horizon lying directly on the fragipan horizon. This suggests that the pan acts as a natural barrier restricting water infiltration and leads to the seasonal development of a perched water table promoting redox processes. The most common are coarse (1-0.5 mm) and medium (0.5-0.25 mm) irregular Fe-Mn nodules showing a gradual boundary and undifferentiated internal fabric. Eluvial horizons contained also larger amounts of round and dense nodules with a sharp boundary, suggesting frequent oxidation and reduction. The fragipan horizon contained mainly irregular and soft nodules, suggesting longer saturation with water during the year. Concentrations of trace elements (Cu, Zn) and P were higher within Fe-Mn nodules than in the surrounding soil materials, showing that iron and manganese oxides adsorbed and immobilised these elements.展开更多
The interplay between soil physical parameters during the recovery from anoxic stresses (reoxidation) is largely unrecognized. This study was conducted to chaxacterise the soil aeration status and derive correlation...The interplay between soil physical parameters during the recovery from anoxic stresses (reoxidation) is largely unrecognized. This study was conducted to chaxacterise the soil aeration status and derive correlations between variable aeration factors during reoxidation. Surface layers (0-30 cm) of three soil types, Haplic Phaeozem, Mollic Gleysol, and Eutric Cambisol (FAO soil group), were selected for analysis. The moisture content was determined for a range of pF values (0, 1.5, 2.2, 2.7, and 3.2), corresponding to the available water for microorganisms and plant roots. The variability of a number of soil aeration parameters, such as water potential (pF), air-filled porosity (Eg), oxygen diffusion rate (ODR), and redox potential (Eh), were investigated. These parameters were found to be interrelated in most cases. There were significant (P 〈 0.001) negative correlations of pF, Eg, and ODR with Eh. A decrease in water content as a consequence of soil reoxidation was manifested by an increase in the values of aeration factors in the soil environment. These results contributed to understanding of soil redox processes during recovery from flooding and might be useful for development of agricultural techniques aiming at soil reoxidation and soil fertility optimisation.展开更多
In recent years, visible light photoredox catalysis has emerged as an important research area in synthesis. In this review, we describe the recent progress in the visible light induced cycloaddition reactions, includi...In recent years, visible light photoredox catalysis has emerged as an important research area in synthesis. In this review, we describe the recent progress in the visible light induced cycloaddition reactions, including [2+2], [3+2], [4+2] and [2+2+2] cycloadditions, for the construction of four-, five- or six-membered cycles and polycycles. Furthermore, the mechanisms for these transformations are also discussed, in which the formation of the radicals is initiated by a visible light photoredox catalysis process.展开更多
A facile synthetic strategy was developed for insitu preparation of two-dimensional (2D)highly crystalline tungsten nitride (WN)nanosheets with controllable morphology as oxygen reduction reaction (ORR)catalysts.The d...A facile synthetic strategy was developed for insitu preparation of two-dimensional (2D)highly crystalline tungsten nitride (WN)nanosheets with controllable morphology as oxygen reduction reaction (ORR)catalysts.The dependence of the crystal structure and morphology of WN on K2SO4content,pH,and pyrolysis temperature was thoroughly examined.The electrocatalytic performance of WN toward ORR in an alkaline electrolyte indicated that K+plays an important role in the control of size and shape in the hydrothermal and nitridation process,thereby promoting the formation of plate-like WO3and 2D WN nanosheets.The WN nanosheets,with largely exposed edge sites,provide abundant catalytic active sites and allow fast charge transfer.Furthermore,they exhibit high stability for ORR and methanol tolerance.展开更多
As a global pollutant process, the reduction of mercury (Hg) is especially important. One pathway is through an abiotic reduction with humic acids (HAs), which is controlled by different factors, including initial...As a global pollutant process, the reduction of mercury (Hg) is especially important. One pathway is through an abiotic reduction with humic acids (HAs), which is controlled by different factors, including initial Hg and HA concentrations, pH, temperature and light. In this study, three humic acids were selected to illustrate the Hg2+ abiotic reduction mechanisms by HAs, and to identify the key limiting factors for reduction rates and amounts. In addition, the initial status of the HAs as a solid or in an aqueous solution were also compared, to help explain why HAs show different dominant characteristics (e.g. complexation or reduction) in the reaction process with Hg. Results indicated that HAs were able to reduce Hg abiotically. Higher initial Hg, higher HA concentrations and either high (8.1) or low (3.6) solution pH decreased the HA reduction capacity. In addition, Hg~ production rates increased with increasing temperature, and the same trend was observed with light exposure. Humic acids added as an aqueous solution resulted in significantly greater HgO production than addition as a bulk solid. Finally, the Hg reduction rate and capacity varied significantly (P 〈 0.05) with HAs from different sources. These findings helped to explain why HAs showed different dominant characteristics (e.g. complexation or reduction) in the reaction process with of Hg2+ reduction, which indicated that humic substances in sink or a source for Hg. Hg, and evidentially demonstrated the existence of a possible pathway natural environments, especially in water bodies, could act either as a展开更多
The electrochemical behavior of nanodiamond (ND) film functionalized with carboxylic acid groups was studied systemati- cally on a glassy carbon (GC) electrode. One stable redox couple corresponding to the carboxy...The electrochemical behavior of nanodiamond (ND) film functionalized with carboxylic acid groups was studied systemati- cally on a glassy carbon (GC) electrode. One stable redox couple corresponding to the carboxylic acid group was observed. At the scan rate of 0.1 V/s, the cathodic and anodic peak potentials were -0.093 V and 0.088 V (vs. Ag/AgCI), respectively. The carboxylic acid groups on the ND surface were reduced to CH2OH via a four electron redox process. The ND film modified electrode showed favorable electrocatalytic behavior toward the oxidation as well as the reduction of biomolecules, such as tryptophan and nicotinamide adenine dinucleotide.展开更多
基金the French Ministry of Research under the ACI-FNS"ECCO-PNBC"project"Evaluation du r~■le des paramètres environnementaux et des activités bactériennes dans la dynamique du fer et du manganèse dans la rhizosphère des plantes:application aux sols de rizières"by the French Embassy in Bangkok.
文摘Most lowlands in Northeast Thailand(Isaan region)are cultivated with rice and large areas are affected by salinity, which drastically limits rice production.A field experiment was conducted during the 2003 rainy season to explore the interactions between salinity and land management in two fields representative of two farming practices:an intensively managed plot with organic inputs and efficient water management,and one without organic matter addition.Field measurements,including pH,Eh,electrical conductivity(EC),and soil solution chemistry,were performed at three depths, with a particular focus on Fe dynamics,inside and outside saline patches. High reducing conditions appeared after flooding particularly in plots receiving organic matter and reduction processes leading to oxide reduction and to the release of Fe and,to a lesser extend,Mn to the soil solution.Oxide reduction led to the consumption of H^+ and the more the Fe reduction was,the higher the pH was,up to 6.5.Formation of hydroxy-green rust were likely to be at the origin of the pH stabilization.In the absence of organic amendments,high salinity prevented the establishment of the reduction processes and pH value remained around 4.Even under high reduction conditions,the Fe concentrations in the soil solution were below commonly observed toxic values and the amended plot had better rice production yield.
基金Project(51078130)supported by the National Natural Science Foundation of ChinaProject(10C0419)supported by the the Education Department of Hunan Province,China
文摘Lysozyme reaction was developed as a novel technique for minimizing the amount of excess sludge in the sequential batch reactor(SBR).In the present work,excess sludge taken from a SBR system was treated by lysozyme reaction and then returned to the reactor.The quality of the effluent water and characteristics of the activated sludge in the SBR were analyzed to determine the effectiveness of the reduction process.The results show that excess sludge production could be reduced to almost 100%in the first30 d of operation and could be reduced to further by 40%in the succeeding 20 d or so.In these time periods,the average removal efficiencies of the chemical oxygen demand and total nitrogen are 87.38%and 52.78%,respectively,whereas the average total phosphorous in the effluent is nearly 17.18%greater than that of the effluent of the reference system.After 50 d of operation,the sludge floc size is in the range of 20 to 80μm,which was smaller than the size prior to the start of the hydrolysis and the ratio of mixed liquor volatile suspended solids/mixed liquor suspended solids increases from 86%to 90%.
文摘The influence of magnetic field on the redox potentials of the Nernst equation. The author offered the new formula Nernst equation in a magnetic field. Our proposed formula takes into account the influence of the magnetic field on the redox processes.
基金Supported by the Project of Scientific Research Base and Scientific Innovation Platform of Beijing Municipal Education Com-mission (PXM2008_014204_050843)the National Natural Science Foundation of China (50808004)the DoctoralStartup Research Program of Beijing University of Technology
文摘For efficient energy consumption and control of effluent quality, the cycle duration for a sequencing batch reactor (SBR) needs to be adjusted by real-time control according to the characteristics and loading of waste-water. In this study, an on-line information system for phosphorus removal processes was established. Based on the analysis for four systems with different ecological community structures and two operation modes, anaerobic-aerobic process and anaerobic-anaerobic process, the characteristic patterns of oxidation-reduction potential (ORP) and pH were related to phosphorous dynamics in the anaerobic, anoxic and aerobic phases, for determination of the end of phosphorous removal. In the operation mode of anaerobic-aerobic process, the pH profile in the anaerobic phase was used to estimate the relative amount of phosphorous accumulating organisms (PAOs) and glycogen accumulat-ing organisms (GAOs), which is beneficial to early detection of ecology community shifts. The on-line sensor val-ues of pH and ORP may be used as the parameters to adjust the duration for phosphorous removal and community shifts to cope with influent variations and maintain appropriate operation conditions.
基金financial assistance from Tehran University of Medical Sciences,Tehran,Iran
文摘The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes(GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic deposition and the surface morphologies and compositions of electrodes were determined by energy-dispersive X-ray(EDX) and scanning electron microscopy(SEM). Cyclic voltammetry and chronoamperometric methods were employed to characterize the oxidation process and its kinetics. Voltammetric studies exhibit one pair of well-defined redox peaks, which is ascribed to the redox process of the nickel and followed by the greatly enhanced current response of the anodic peak in the presence of contraflam and a decrease in the corresponding cathodic current peak. This indicates that the immobilized redox mediator on the electrode surface was oxidized contraflam via an electrocatalytic mechanism. The catalytic currents increased linearly with the concentration of contraflam in the range of 0.25– 1.5 mmol/L. The anodic peak currents were linearly proportional to the square root of scan rate. This behaviour is the characteristic of a diffusion-controlled process. The determination of contraflam in capsules is applied satisfactorily by modified electrode.
基金Supported by the National Natural Science Foundation of China (50978003), the Natural Science Foundation of Beijing (8091001), the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR 20090502), and the State Key Laboratory of Urban Water Resource and Environment (HIT) (QAK200802).
文摘The nitrite accumulation in the denitrification process is investigated with sequencing batch reactor (SBR) treating pre-treated landfill leachate in anoxic/anaerobic up-flow anaerobic sludge bed I(UASB). Nitrite accumulates obviously at different initial nitrate concentrations (64.9,54.8,49.3 and 29.5 mg·L^-1 ) and low temperatures, and the two break points on the oxidation-reduction potential (ORP) profile indicate the completion of nitrate and nitrite reduction. Usually, the nitrate reduction rate is used as the sole parameter to characterize the denitrification rate, and nitrite is not even measured. For accuracy, the total oxidized nitrogen (nitrate + nitrite) is used as a measure, though details characterizing the process may be overlooked. Additionally, batch tests are conducted to investigate the effects of C/N ratios and types of carbon sources on the nitrite accumulation during the denitrification. It is observed that carbon source is sufficient for the reduction of nitrate to nitrite, but for further reduction of nitrite to nitrogen gas, is deficient when C/N is below the theoretical critical level of 3.75 based on the stoichiometry of denitrification. Five carbon sources used in this work, except for glucose, may cause the nitrite accumulation. From experimental results and cited literature, it is concluded that Alcaligene species may be contained in the SBR activated-sludge system.
基金Project(2010CB630903)supported by National Basic Research Program of ChinaProject(51374249)supported by the National Natural Science Foundation of China
文摘Chalcopyrite dissolution was evaluated by bioleaching and electrochemical experiments with thermophile A. manzaensis(Acidianus manzaensis) and mesophile L. ferriphilum(Leptospirillum ferriphium) cultures at 65 ℃ and 40 ℃, respectively. It was investigated that the bioleaching of chalcopyrite was stepwise. It was reduced to Cu2 S at a lower redox potential locating in the whole bioleaching process by A. manzaensis at high temperature while only at initial days of bioleaching by L. ferriphilum at a relative low temperature. No reduced product was detected when the redox potential was beyond a high level(e.g., 550 m V(vs SCE)) bioleached by L. ferriphilum. Chalcopyrite bioleaching efficiency was substantially improved bioleached by A. manaensis compared to that by L. ferriphilum, which was mainly attributed to the reduction reaction occurring during bioleaching. The reductive intermediate Cu2 S was more amenable to oxidation than chalcopyrite, causing enhanced copper extraction.
基金funded by National Natural Science Foundation of China(41210004,41603018,41673124 and2013CB956401)ministry of water resources of People’s Republic of China(201401050)
文摘Rare earth elements(REEs) can record geologic and geochemical processes. We studied two granitic regolith profiles from different climatic zones in eastern Tibetan Plateau and found that(1)∑ RREEs ranged from119.65 to 275.33 mg/kg in profile ND and5.11–474.55 mg/kg in profile GTC, with average values of205.79 and 161 mg/kg, respectively. ∑RREEs was higher in accumulation horizon and semi-regolith;(2) Influenced by climate, the fractionation of light and heavy REEs(LREEs and HREEs) varied during weathering. The ratio of LREEs/HREEs in pedosphere was higher than semi-regolith in tropical profile;(3) A negative Eu anomaly in both profiles was the result of bedrock weathering. A positive Ce anomaly was observed in all layers of profile ND, and only in the upper 100 cm of profile GTC. This indicates that redox conditions along the regolith profile varied considerably with climate.(4) Normalized by chondrite,LREEs accumulated much more than HREEs; REE distribution curves were right-leaning with a V-type Eu anomaly in both profiles.
基金National Natural Science Foundation of China(NSFC)(No.50978118)
文摘The aim of this work is to evaluate the feasibility of applying the technology of oxidation-reduction potential (ORP) control on the municipal wastewater treatment system for nitrogen and phosphorus removal. Meanwhile the relation between the optimal ORP ( ORPopt ) and influent C/N ratio was evaluated, in which the influent chemical oxygen demand ( COD ) concentration was stabilized at (290 ± 10 ) mg/L, the influent total phosphorus (TP) concentration was stabilized at (7.0 ± 0.5 ) mg/L. The results indicated that: (1) the ORP in the second anoxic zone had effect on nitrogen and phosphorus removal capability, and the average percentages of phosphorus uptake in ANO2 zone ( ηa ) increased with increasing ORP, i. e. , increasing from 12. 0% at - 143 mV to 22.0%,30.0%,37.0%, and45.0% at -123, -111, -105 and -95 mV, respectively; (2) the ORPopt as function of influent C/N ratio could be calculated by the equation: y ffi 252. 73e〈 -x/3.39) _ 131.01 ; the maximum percentage of phosphorus uptake in ANO2 as function of the ORPopt could be calculated by the equation: y ffi -0.49e(x/15.58) + 1. 51. The ORPopt was the important process control parameter that must be optimized for operation of enhanced biological phosphorus removal ( EBPR ) system. Moreover, ORP sensor is very simple, and the industrial applications of this strategy is practical.
基金Supported by the National Natural Science Foundation of China(No.21377091)
文摘In order to investigate the effect of plant density ofPotamogeton crispus L. on the remediation of sedi- ments contaminated by polycyclic aromatic hydrocarbons, a 54-day experiment with four plant densities (642, 1 604, 2 567 and 3 530 plants/m^2) was conducted. The results showed higher plant density with slower plant growth rate. Surface area per plant was the most sensitive root parameter to plant density. At the end of the 54-day experi- ment, planting P. crispus enhanced the dissipation ratios of phenanthrene and pyrene in sediments by 6.5%-26,2% and 0.95%-13.6%, respectively. The dissipation increment increased with increasing plant density. Plant uptake accounted for only a small portion of the dissipation increments. Furthermore, P. crispus could evidently improve sediment redox potentials, and strong positive correlations between root surface area and the redox potential as well as between the redox potentials and the dissipation ratios of phenanthrene and pyrene were obtained, indicating that the oxygen released by the roots ofP. crispus might be the main mechanism by which P. crispus enhanced the dis- sipation of PAHs in sediments.
文摘Controlling the biogas fermentation process is the key for maintaining stable operation of biogas system and increasing gas yield. Aiming at features of biogas fermentation process and difficulties of control, a practical control scheme is proposed combining the abundant experience of biogas experts. And it discussed the structural design and hardware configuration of the expert control system, established the database and role base, and designed the control strategy of production system inference. The design scheme with ZigBee and PDA technology as core is employed so as to solve problems of environmental factor detection and data transfer management. The test result shows that the deviation of temperature is controlled within ± 0.9℃, the deviation of pH is controlled within ±0.3, the deviation of oxidation-reduction potential is controlled within ±30mV, the deviation of gas production is controlled within ± 9mL and that of methane concentration is controlled within ±4.5%. This system is easily expandable and applicable to biogas engineering at various scales.
文摘The possibilities of changes of ORP (oxidation-reduction water potential) with the help of chemical and physical-chemical methods were explored. Distillation and membrane technology were used as physical-chemical methods. In the case of application of chemical methods well-soluble substances were added into water. It was ascertained that the application of membrane technology makes it possible to obtain antioxidant water with negative ORR. Different energy change in a time unit can be applied in a whole number of technological processes and reveals new possibilities for many branches of industry.
基金Supported by the Polish State Committee for Scientific Research (No. N N305 120934)
文摘Iron and manganese oxides are common components of soils. They frequently occur in nodules constituting important soil sorbents and play a crucial role in a number of chemical reactions in the soil environment. In addition, the oxides are very sensitive to environmental changes (moisture, pH, Eh) constituting important indicators of soil-forming processes and water movement in the landscape. The objectives of the study were: i) to examine the distribution and size of Fe-Mn nodules in Albeluvisols containing a fragipan horizon; ii) to determine the morphology and chemical composition of the nodules, and iii) to estimate the effect of the fragipan horizon on water movement within the soil profile. An investigation was carried out on five soil profiles containing a fragipan horizon and classified as Fragic Albeluvisols within the Carpathian Foothills in Poland. In the Albeluvisols studied, the maximum concentration of Fe-Mn nodules occurred in the horizon lying directly on the fragipan horizon. This suggests that the pan acts as a natural barrier restricting water infiltration and leads to the seasonal development of a perched water table promoting redox processes. The most common are coarse (1-0.5 mm) and medium (0.5-0.25 mm) irregular Fe-Mn nodules showing a gradual boundary and undifferentiated internal fabric. Eluvial horizons contained also larger amounts of round and dense nodules with a sharp boundary, suggesting frequent oxidation and reduction. The fragipan horizon contained mainly irregular and soft nodules, suggesting longer saturation with water during the year. Concentrations of trace elements (Cu, Zn) and P were higher within Fe-Mn nodules than in the surrounding soil materials, showing that iron and manganese oxides adsorbed and immobilised these elements.
基金Supported by the Ministry of Science and Higher Education of Poland(No.N 305 009 32/0514)
文摘The interplay between soil physical parameters during the recovery from anoxic stresses (reoxidation) is largely unrecognized. This study was conducted to chaxacterise the soil aeration status and derive correlations between variable aeration factors during reoxidation. Surface layers (0-30 cm) of three soil types, Haplic Phaeozem, Mollic Gleysol, and Eutric Cambisol (FAO soil group), were selected for analysis. The moisture content was determined for a range of pF values (0, 1.5, 2.2, 2.7, and 3.2), corresponding to the available water for microorganisms and plant roots. The variability of a number of soil aeration parameters, such as water potential (pF), air-filled porosity (Eg), oxygen diffusion rate (ODR), and redox potential (Eh), were investigated. These parameters were found to be interrelated in most cases. There were significant (P 〈 0.001) negative correlations of pF, Eg, and ODR with Eh. A decrease in water content as a consequence of soil reoxidation was manifested by an increase in the values of aeration factors in the soil environment. These results contributed to understanding of soil redox processes during recovery from flooding and might be useful for development of agricultural techniques aiming at soil reoxidation and soil fertility optimisation.
基金supported by the National Natural Science Foundation of China(2140204621172060+2 种基金21472039)the Specialized Research Fund for the Doctoral Program of Higher Education(20120161110041)the Hunan Provincial Natural Science Foundation of China(13JJ2018)
文摘In recent years, visible light photoredox catalysis has emerged as an important research area in synthesis. In this review, we describe the recent progress in the visible light induced cycloaddition reactions, including [2+2], [3+2], [4+2] and [2+2+2] cycloadditions, for the construction of four-, five- or six-membered cycles and polycycles. Furthermore, the mechanisms for these transformations are also discussed, in which the formation of the radicals is initiated by a visible light photoredox catalysis process.
基金supported by the National Natural Science Foundation of China(21306119)the Key Research and Development Projects in Sichuan Province(2017GZ0397,2017CC0017)the Science and Technology Project of Chengdu(2015-HM01-00531-SF)
文摘A facile synthetic strategy was developed for insitu preparation of two-dimensional (2D)highly crystalline tungsten nitride (WN)nanosheets with controllable morphology as oxygen reduction reaction (ORR)catalysts.The dependence of the crystal structure and morphology of WN on K2SO4content,pH,and pyrolysis temperature was thoroughly examined.The electrocatalytic performance of WN toward ORR in an alkaline electrolyte indicated that K+plays an important role in the control of size and shape in the hydrothermal and nitridation process,thereby promoting the formation of plate-like WO3and 2D WN nanosheets.The WN nanosheets,with largely exposed edge sites,provide abundant catalytic active sites and allow fast charge transfer.Furthermore,they exhibit high stability for ORR and methanol tolerance.
基金Supported by the National Natural Science Foundation of China(No.40971147/D010503)the China Postdoctoral Science Foundation(No.2013M542238)+1 种基金the Fundamental Research Funds for The Central Universities,China(No.XDJK2013C151)the Ph.D.Initiation Fund of Southwest University,China(No.SWU112098)
文摘As a global pollutant process, the reduction of mercury (Hg) is especially important. One pathway is through an abiotic reduction with humic acids (HAs), which is controlled by different factors, including initial Hg and HA concentrations, pH, temperature and light. In this study, three humic acids were selected to illustrate the Hg2+ abiotic reduction mechanisms by HAs, and to identify the key limiting factors for reduction rates and amounts. In addition, the initial status of the HAs as a solid or in an aqueous solution were also compared, to help explain why HAs show different dominant characteristics (e.g. complexation or reduction) in the reaction process with Hg. Results indicated that HAs were able to reduce Hg abiotically. Higher initial Hg, higher HA concentrations and either high (8.1) or low (3.6) solution pH decreased the HA reduction capacity. In addition, Hg~ production rates increased with increasing temperature, and the same trend was observed with light exposure. Humic acids added as an aqueous solution resulted in significantly greater HgO production than addition as a bulk solid. Finally, the Hg reduction rate and capacity varied significantly (P 〈 0.05) with HAs from different sources. These findings helped to explain why HAs showed different dominant characteristics (e.g. complexation or reduction) in the reaction process with of Hg2+ reduction, which indicated that humic substances in sink or a source for Hg. Hg, and evidentially demonstrated the existence of a possible pathway natural environments, especially in water bodies, could act either as a
基金sponsored by the National Natural Science Foundation of China (21075136)
文摘The electrochemical behavior of nanodiamond (ND) film functionalized with carboxylic acid groups was studied systemati- cally on a glassy carbon (GC) electrode. One stable redox couple corresponding to the carboxylic acid group was observed. At the scan rate of 0.1 V/s, the cathodic and anodic peak potentials were -0.093 V and 0.088 V (vs. Ag/AgCI), respectively. The carboxylic acid groups on the ND surface were reduced to CH2OH via a four electron redox process. The ND film modified electrode showed favorable electrocatalytic behavior toward the oxidation as well as the reduction of biomolecules, such as tryptophan and nicotinamide adenine dinucleotide.