Proton exchange membrane fuel cell (PEMFC) stack temperature and cathode stoichiometric oxygen are very important control parameters. The performance and lifespan of PEMFC stack are greatly dependent on the parameters...Proton exchange membrane fuel cell (PEMFC) stack temperature and cathode stoichiometric oxygen are very important control parameters. The performance and lifespan of PEMFC stack are greatly dependent on the parameters. So, in order to improve the performance index, tight control of two parameters within a given range and reducing their fluctuation are indispensable. However, control-oriented models and control strategies are very weak junctures in the PEMFC development. A predictive control algorithm was presented based on their model established by input-output data and operating experiences. It adjusts the operating temperature to 80 ℃. At the same time, the optimized region of stoichiometric oxygen is kept between 1.8?2.2. Furthermore, the control algorithm adjusts the variants quickly to the destination value and makes the fluctuation of the variants the least. According to the test results, compared with traditional fuzzy and PID controllers, the designed controller shows much better performance.展开更多
Despite the intense research efforts directed to electrocatalytic nitrogen reduction reaction(eNRR),the NH_(3) yield and selectivity are still not up to the standard of practical application.Here,high-entropy perovski...Despite the intense research efforts directed to electrocatalytic nitrogen reduction reaction(eNRR),the NH_(3) yield and selectivity are still not up to the standard of practical application.Here,high-entropy perovskite oxides with composition Bax(FeCoNiZrY)_(0.2)O_(3−δ)(Bx(FCNZY)_(0.2)(x=0.9,1)are reported as eNRR catalysts.The eNRR activity of high-entropy perovskite oxide is enhanced by changing the nonstoichiometric metal elements at the A-site,thus generating additional oxygen vacancies.The NH_(3) yield and Faraday efficiency for B_(0.9)(FCNZY)_(0.2) are 1.51 and 1.95 times higher than those for B(FCNZY)_(0.2),respectively.The d-band center theory is used to theoretically predict the catalytically active center at the B-site,and as a result,nickel was identified as the catalytic site.The free energy values of the intermediate states in the optimal distal pathway show that the third protonation step(*NNH_(2)→*NNH_(3))is the rate-determining step and that the increase in oxygen vacancies in the high-entropy perovskite contributes to nitrogen adsorption and reduction.This work provides a framework for applying high-entropy structures with active site diversity for electrocatalytic nitrogen fixation.展开更多
基金Project (2003AA517020) supported by the National High-Tech Research and Development Program of China
文摘Proton exchange membrane fuel cell (PEMFC) stack temperature and cathode stoichiometric oxygen are very important control parameters. The performance and lifespan of PEMFC stack are greatly dependent on the parameters. So, in order to improve the performance index, tight control of two parameters within a given range and reducing their fluctuation are indispensable. However, control-oriented models and control strategies are very weak junctures in the PEMFC development. A predictive control algorithm was presented based on their model established by input-output data and operating experiences. It adjusts the operating temperature to 80 ℃. At the same time, the optimized region of stoichiometric oxygen is kept between 1.8?2.2. Furthermore, the control algorithm adjusts the variants quickly to the destination value and makes the fluctuation of the variants the least. According to the test results, compared with traditional fuzzy and PID controllers, the designed controller shows much better performance.
基金supported by the National Natural Science Foundation of China (52161135302, 21674019, and 51801075)the Research Foundation Flanders (G0F2322N)+8 种基金Shanghai Scientific and Technological Innovation Project (18JC1410600)the Program of the Shanghai Academic Research Leader (17XD1400100)the financial support from the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108)the Long-term Structural Funding (Methusalem CASAS2, Meth/15/04)Interne Fondsen KU Leuven through project C3/20/067the support from the Research Foundation-Flanders (FWO) in the form of a doctoral fellowship (1SA3321N)the financial support from China Scholarship Council in the form of a visiting Ph.D. Student (File No. 202106790090)the LvLiang Cloud Computing Center of China, and the calculations were performed on a TianHe-2 systemthe characterizations supported by the Central Laboratory, School of Chemical and Material Engineering, Jiangnan University。
文摘Despite the intense research efforts directed to electrocatalytic nitrogen reduction reaction(eNRR),the NH_(3) yield and selectivity are still not up to the standard of practical application.Here,high-entropy perovskite oxides with composition Bax(FeCoNiZrY)_(0.2)O_(3−δ)(Bx(FCNZY)_(0.2)(x=0.9,1)are reported as eNRR catalysts.The eNRR activity of high-entropy perovskite oxide is enhanced by changing the nonstoichiometric metal elements at the A-site,thus generating additional oxygen vacancies.The NH_(3) yield and Faraday efficiency for B_(0.9)(FCNZY)_(0.2) are 1.51 and 1.95 times higher than those for B(FCNZY)_(0.2),respectively.The d-band center theory is used to theoretically predict the catalytically active center at the B-site,and as a result,nickel was identified as the catalytic site.The free energy values of the intermediate states in the optimal distal pathway show that the third protonation step(*NNH_(2)→*NNH_(3))is the rate-determining step and that the increase in oxygen vacancies in the high-entropy perovskite contributes to nitrogen adsorption and reduction.This work provides a framework for applying high-entropy structures with active site diversity for electrocatalytic nitrogen fixation.