The technique of micro-electrolysis-contact oxidization was exploited to treat chitin-producing wastewater. Results showed that Fe-C micro-electrolysis can remove about 30% CODcr, raise pH from 0.7 to 5.5. The CODcr r...The technique of micro-electrolysis-contact oxidization was exploited to treat chitin-producing wastewater. Results showed that Fe-C micro-electrolysis can remove about 30% CODcr, raise pH from 0.7 to 5.5. The CODcr removal efficiency by biochemical process can be more than 80%. During a half year抯 operation, the whole system worked very stably and had good results, as proved by the fact that every quality indicator of effluent met the expected discharge stan-dards; which means that chitin wastewater can be treated by the technique of micro-electrolysis, contact oxidization.展开更多
Nanostructured γ-Fe2O3/SiO2 complex oxide was prepared by sol-gel method with tetraethoxysilane and iron nitrate as precursors. The particle size distribution, thermal and phase stabilities and gas sensing properties...Nanostructured γ-Fe2O3/SiO2 complex oxide was prepared by sol-gel method with tetraethoxysilane and iron nitrate as precursors. The particle size distribution, thermal and phase stabilities and gas sensing properties were systematically characterized by TEM, granularity distribution, TG-DTA, XRD and gas sensitivity measurements. The particle size is about 10 nm and size distribution is very narrow. The sensitivity of the sensing element to CO, H2, C2H4, C6H6 and the effects of calcination temperature on the sensitivity and conductance of gases were examined. The combination of excellent thermal stability and tunable gas sensing properties through careful control of the preparation and judicious selection of material compositions gives rise to novel nanocomposites, which is attractive for the sensitive and selective detection of reducing gases and some hydrocarbon gases.展开更多
文摘The technique of micro-electrolysis-contact oxidization was exploited to treat chitin-producing wastewater. Results showed that Fe-C micro-electrolysis can remove about 30% CODcr, raise pH from 0.7 to 5.5. The CODcr removal efficiency by biochemical process can be more than 80%. During a half year抯 operation, the whole system worked very stably and had good results, as proved by the fact that every quality indicator of effluent met the expected discharge stan-dards; which means that chitin wastewater can be treated by the technique of micro-electrolysis, contact oxidization.
基金Supported by the National Natural Science Foundation of China (No. 20377004) and Beijing Natural Science Foundation (No. 2032014, No. 8032007).
文摘Nanostructured γ-Fe2O3/SiO2 complex oxide was prepared by sol-gel method with tetraethoxysilane and iron nitrate as precursors. The particle size distribution, thermal and phase stabilities and gas sensing properties were systematically characterized by TEM, granularity distribution, TG-DTA, XRD and gas sensitivity measurements. The particle size is about 10 nm and size distribution is very narrow. The sensitivity of the sensing element to CO, H2, C2H4, C6H6 and the effects of calcination temperature on the sensitivity and conductance of gases were examined. The combination of excellent thermal stability and tunable gas sensing properties through careful control of the preparation and judicious selection of material compositions gives rise to novel nanocomposites, which is attractive for the sensitive and selective detection of reducing gases and some hydrocarbon gases.