Inhibition of the enzyme COMT (catechol-O-methyltransferase) is an important approach in the treatment of Parkinson's disease. A series of potent catechols for COMT may give insight to develop new ways of antiparki...Inhibition of the enzyme COMT (catechol-O-methyltransferase) is an important approach in the treatment of Parkinson's disease. A series of potent catechols for COMT may give insight to develop new ways of antiparkinson drug. COMT inhibitors represent a new class of antiparkinson drugs, when they are coadministered with levodopa. Our goal of research is to study the inhibition of catechol-O-methyltransferase by molecular modeling methods. Different molecular modeling tools are used to perform this work (molecular mechanics, molecular dynamics and molecular docking (molegro virtnaldocker)). The results obtained from this work, into which the inhibition of catechol-O-methyltransferase by molecular modeling methods was elucidated, allow us to conclude that different catechols presents a more optimised inhibition of catechol-O-methyltransferase. The results suggest reducing the severity of Parkinson's disease.展开更多
文摘Inhibition of the enzyme COMT (catechol-O-methyltransferase) is an important approach in the treatment of Parkinson's disease. A series of potent catechols for COMT may give insight to develop new ways of antiparkinson drug. COMT inhibitors represent a new class of antiparkinson drugs, when they are coadministered with levodopa. Our goal of research is to study the inhibition of catechol-O-methyltransferase by molecular modeling methods. Different molecular modeling tools are used to perform this work (molecular mechanics, molecular dynamics and molecular docking (molegro virtnaldocker)). The results obtained from this work, into which the inhibition of catechol-O-methyltransferase by molecular modeling methods was elucidated, allow us to conclude that different catechols presents a more optimised inhibition of catechol-O-methyltransferase. The results suggest reducing the severity of Parkinson's disease.