This study aimed to understand the growing development and physiological characteristics of seeds harvested different days after pollination and the seedlings emerged from the seeds of yellow-seeded Brassica napus L.....This study aimed to understand the growing development and physiological characteristics of seeds harvested different days after pollination and the seedlings emerged from the seeds of yellow-seeded Brassica napus L..Two yellow-seeded cultivars‘Hongyuan 558’and‘Qinyou 806’were selected in this study,and 50 seeds were collected 30,35,and 40 d after pollination,respectively.The seeds were weighed and placed on filter paper for hydroponic experiments.The seed germination rate was determined 3-5 d later.The physiological indicators including superoxide dismutase(SOD),peroxidase(POD),and catalase(CAT)activities and malondialdehyde(MDA)content were measured for the seeds harvested different days after pollination and the 7-day-seedlings emerged from the seeds.The results showed that the seed dry weights and germination rates of both‘Qinyou 806’and‘Hongyuan 558’increased as the days after pollination increased,especially 30-35 d after pollination.The germination rate and dry and fresh weights of the seeds showed no significant differences between the two cultivars,and almost all the seeds germinated 40 d after pollination.As the days after pollination increased,the SOD activities in the seeds of both cultivars first increased and then decreased,reaching their peaks 35 d after pollination,which may be related to encountering adverse stress.The POD activity in the seeds of‘Qinyou 806’kept declining,and that of‘Hongyuan 558’first increased and then decreased,which may be related to the antioxidant mechanism and adaptive regulation.The CAT activities in the seeds of both cultivars first decreased and then increased.The MDA content in the seeds of‘Qinyou 806’first decreased and then increased,while that of‘Hongyuan 558’kept reducing and was the highest in the seeds 30 d after pollination,which indicated‘Hongyuan 558’was mildly affected by the environment and had strong resistance.The activities of SOD and POD in the seedlings of two cultivars that were emerged from the seeds 35-40 d after pollination became weakened,which may be related to their exposure to stress.The CAT activity in the seedlings of‘Hongyuan 558’was generally higher than that of‘Qinyou 806’,indicating that‘Hongyuan 558’had stronger stress resistance.The MDA content in the seedlings emerged from the seeds 35-40 d after pollination showed a decreasing trend,indicating that the seedlings emerged from the seeds harvested at this stage had mild cell membrane damage and enhanced stress resistance.In conclusion,‘Hongyuan 558’had strong environmental adaptability and stress resistance.展开更多
The inhibitory effect of the methanolic extract of the root of Aegle marmelos (MERA) and its constituents on the lipid peroxidation in vivo and in vitro were studied. The results suggested that MERA increased the acti...The inhibitory effect of the methanolic extract of the root of Aegle marmelos (MERA) and its constituents on the lipid peroxidation in vivo and in vitro were studied. The results suggested that MERA increased the activities of superoxide dismutase (SOD) and GSH-peroxidase in the liver cytosol of mice, but showed no significant effect on the activity of catalase, and one of its major constituents, 4-methoxy-1-methyl-2-quinolone (MMQ) increased the activity of SOD in liver tissue of mice intoxicated with FeCl2-ascorbic acid (AA)-ADP in vivo. Various constituents isolated from the root of title plant inhibited the lipid peroxidation in rat liver homogenate, which was in vitro induced by FeCl2-ascorbic acid, CCl4-NADPH, or ADP- NADPH. Of the test compounds, MMQ and its derivatives integriquinolone were similar to (-tocopherol in inhibiting MDA production in rat liver microsomes induced by Fe2+-ascorbate, CCl4-NADPH, or ADP-NADPH.展开更多
A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystem...A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences (42°24'N, 128°28'E; 738 m in elevation) in the northeast China during 1999-2006. Three treatments of the CO2 enrichment, designed as 500 μmol·mol-1 CO2 open-top chamber (OTC), ambient control chamber and unchambered field (approx. 370 μmol·mol^-1CO2), were conducted with Pinus koraiensis and Pinus sylvestriformis tree species. Soil sampling was made and analyzed separately in spring, summer and autumn in 2006 after the soil enzymes were exposed to elevated CO2 concentration (500 μmol·mol^-1) for eight growing seasons. Results showed that, at elevated CO2 concentration (500 μmol·mol^-1), the activities of invertase (except for the summer samples of P. koraiensis) presented a remarkable decline in all growing seasons, while the activities of dehydrogenase had an increase but only part of the results was remarkable; the activities of polyphenol oxidase in P. sylvestriformis rhizosphere showed a remarkable decrease; the catalase activities increased in spring, while in turn were decline in other seasons. This study also revealed that the soil enzyme activities are significantly correlated with the tree species under the CO2 enhancement.展开更多
\ Effects of breviscapine, the active ingredient isolated from Erigeron breviscapus (Vant) Handmazz, on the changes in antioxidant enzyme activity induced by cerebral ischemiareperfusion in rats were explored. It wa...\ Effects of breviscapine, the active ingredient isolated from Erigeron breviscapus (Vant) Handmazz, on the changes in antioxidant enzyme activity induced by cerebral ischemiareperfusion in rats were explored. It was found that breviscapine improved the activities of superoxide dismutase (SOD), GSHperoxidase and catalase, while decreasing the malondialdehyde (MDA) content in the brain, which was benificial in reducing the damage from cerebral ischemiareperfusion.展开更多
Activities of selected soil enzymes (invertase, acid phosphatase, proteinase,catalase, peroxidase and polyphenoloxi-dase) were determined under different spruce forests withrestoration histories of 5, 13, 18, 23, 27 y...Activities of selected soil enzymes (invertase, acid phosphatase, proteinase,catalase, peroxidase and polyphenoloxi-dase) were determined under different spruce forests withrestoration histories of 5, 13, 18, 23, 27 years and an old growth forest over 400 years old in theeastern Qinghai-Tibetan Plateau, China, and their possible use as indicators of ecosystems healthwere analyzed. Plots 10 X 10 m with 4 replications were established to investigate three hypotheses:soil enzyme activities a) would increase with the restoration process; b) would be greater insurface soils than at lower depths; and c) would be correlated to selected physicochemicalproperties. Results showed that as the forests developed after restoration, invertase and peroxidaseactivities usually increased up to the 23 year point. Also soil enzyme activities were associatedwith surface soils and decreased with depths, suggesting that in earlier restoration stages surfaceaddition of organic fertilizer to soils might be more effective than additions at depth. In the 0-20cm soil, there were significant correlations (P < 0.01 or < 0.05) between some soil enzymeactivities and some selected chemical properties. Therefore, temporal changes in enzyme activitiesshould be included as an indicator when evaluating sustainable forest management practices.展开更多
The epoxidation of methyl oleate(MO)was conducted in the presence of aqueous H2O2 as the oxidant and hierarchical TS-1(HTS-1)as the catalyst;the catalyst was synthesized using polyquaternium-6 as the mesopore template...The epoxidation of methyl oleate(MO)was conducted in the presence of aqueous H2O2 as the oxidant and hierarchical TS-1(HTS-1)as the catalyst;the catalyst was synthesized using polyquaternium-6 as the mesopore template.The effects of various parameters,i.e.,H2O2/C=C molar ratio,oxidant concentration,amount of the catalyst,reaction temperature,and time,were systematically studied.Furthermore,response surface methodology(RSM)was used to optimize the conditions to maximize the yield of epoxy MO and to evaluate the significance and interplay of the factors affecting the epoxy MO production.The H2O2/C=C molar ratio and catalyst amount were the determining factors for MO epoxidation,wherein the maximum yield of epoxy MO reached 94.9%over HTS-1 under the optimal conditions.展开更多
The performance of UV/H_2O_2, UV/O_3, and UV/H_2O_2/O_3 oxidationsystems for the treatment of municipal solid-waste landfill leachatewas investigated. Main objective of the experiment was to removetotal organic carbon...The performance of UV/H_2O_2, UV/O_3, and UV/H_2O_2/O_3 oxidationsystems for the treatment of municipal solid-waste landfill leachatewas investigated. Main objective of the experiment was to removetotal organic carbon (TOC), non-biodegradable organic compounds(NBDOC) and color. In UV/H_2O_2 oxidation experiment, with theincrease of H_2O_2 dosage, removal efficiencies of TOC and coloralong with the ratio of biochemical oxygen demand (BOD) to chemicaloxygen demand (COD) of the effluent were increased and a betterperformance was obtained than the system H_2O_2 alone.展开更多
Photocatalytic hydrogen peroxide(H_(2)O_(2))production from O_(2) and H2O is an ideal process for solar‐to‐chemical energy conversion.Herein,ZnO nanorods are prepared via a simple hydrothermal method for photocataly...Photocatalytic hydrogen peroxide(H_(2)O_(2))production from O_(2) and H2O is an ideal process for solar‐to‐chemical energy conversion.Herein,ZnO nanorods are prepared via a simple hydrothermal method for photocatalytic H_(2)O_(2) production.The ZnO nanorods exhibit varied performance with different calcination temperatures.Benefiting from calcination,the separation efficiency of photo‐induced carriers is significantly improved,leading to the superior photocatalytic activity for H_(2)O_(2) production.The H_(2)O_(2) produced by ZnO calcined at 300℃ is 285μmol L^(−1),which is over 5 times larger than that produced by untreated ZnO.This work provides an insight into photocatalytic H2O2 production mechanism by ZnO nanorods,and presents a promising strategy to H2O2 production.展开更多
Intracellular reactive oxygen species (ROS) are known to regulate apoptosis. Activation of caspase-9, the initial caspase in the mitochondrial apoptotic cascade, is closely associated with ROS, but it is unclear whe...Intracellular reactive oxygen species (ROS) are known to regulate apoptosis. Activation of caspase-9, the initial caspase in the mitochondrial apoptotic cascade, is closely associated with ROS, but it is unclear whether ROS regulate caspase-9 via direct oxidative modification. The present study aims to elucidate the molecular mechanisms by which ROS mediate caspase-9 activation. Our results show that the cellular oxidative state facilitates caspase-9 activation. Hydrogen peroxide treatment causes the activation of caspase-9 and apoptosis, and promotes an interac- tion between easpase-9 and apoptotic protease-activating factor 1 (Apaf-1) via disulfide formation. In addition, in an in vitro mitochondria-free system, the thiol-oxidant diamide promotes auto-cleavage of caspase-9 and the caspase-9/ Apaf-1 interaction by facilitating the formation of disulfide-linked complexes. Finally, a point mutation at C403 of caspase-9 impairs both H2O2-promoted caspase-9 activation and interaction with Apaf-1 through the abolition of disulfide formation. The association between cytochrome c and the C403S mutant is significantly weaker than that between cytochrome c and wild-type caspase-9, indicating that oxidative modification of caspase-9 contributes to apoptosome formation under oxidative stress. Taken together, oxidative modification of caspase-9 by ROS can medi- ate its interaction with Apaf-1, and can thus promote its auto-cleavage and activation. This mechanism may facilitate apoptosome formation and caspase-9 activation under oxidative stress.展开更多
The epoxidation of unsaturated fatty acid methyl esters(FAMEs)by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Brnsted acidic ionic liquid (I...The epoxidation of unsaturated fatty acid methyl esters(FAMEs)by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Brnsted acidic ionic liquid (IL)[C3SO3HMIM][HSO4]as catalyst.The effects of hydrogen peroxide/ethylenic unsaturation ratio,acetic acid concentration,IL concentration,recycling of the IL catalyst,and temperature on the conversion to oxirane were studied.The kinetics and thermodynamics of unsaturated FAMEs epoxidation and the kinetics of oxirane cleavage of the epoxidized FAMEs by acetic acid were also studied.The conversion of ethylenic unsaturation group to oxirane, the reaction rate of the conversion to oxirane,and the rate of hydrolysis(oxirane cleavage)were higher by using the IL catalyst.展开更多
Co-intensification was researched to accelerate gold leaching with regards to its electrochemical nature by using anodic intensifiers of heavy metal ions (Pb2+,Bi3+,Tl+,Hg2+ and Ag+) on the basis of hydrogen peroxide ...Co-intensification was researched to accelerate gold leaching with regards to its electrochemical nature by using anodic intensifiers of heavy metal ions (Pb2+,Bi3+,Tl+,Hg2+ and Ag+) on the basis of hydrogen peroxide assistant leaching on three different types of materials which were classified as a refractory sulphide gold concentrate,an easily leachable sulphide gold concentrate,and a low grade oxide gold ore according to their leaching characteristics.The results showed that,favorable co-intensification effects on the three materials were obtained and leaching time of gold was effectively shortened to no longer than 12 h from 16 to 24 h for hydrogen peroxide assistant leaching.For the five tested heavy metal ions,Bi3+and Tl+ presented co-intensifying effect on all the three materials,and Hg2+ caused co-intensifying effect on both refractory and easily leachable sulphide gold concentrates,and Pb2+ and Ag+ only had co-intensifying effect on the easily leachable sulphide gold concentrate.展开更多
AIM: To investigate the role of reactive oxygen species in the ulcer-aggravating effect of lead in albino rats. METHODS: Albino Wistar rats were randomly divided into three groups and treated orally with 100 mg/L (low...AIM: To investigate the role of reactive oxygen species in the ulcer-aggravating effect of lead in albino rats. METHODS: Albino Wistar rats were randomly divided into three groups and treated orally with 100 mg/L (low dose) or 5000 mg/L (high dose) of lead acetate for 15 wk. A third group received saline and served as control. At the end of wk 15, colorimetric assays were applied to determine the concentrations of total protein and nitrite, the activities of the oxidative enzymes catalase and superoxide dismutase, and lipid peroxidation in homogenized gastric mucosal samples. RESULTS: Exposure of rats to lead significantly increased the gastric mucosal damage caused by acidified ethanol. Although the basal gastric acid secretory rate was not significantly altered, the maximal response of the stomach to histamine was significantly higher in the lead-exposed animals than in the unexposed control group. Exposure to low and high levels of lead significantly increased gastric lipid peroxidation to 183.2% ± 12.7% and 226.1% ± 6.8% of control values respectively (P < 0.0). On the other hand, lead exposure significantly decreased catalase and superoxide dismutase (SOD) activities and the amount of nitrite in gastric mucosal samples. CONCLUSION: Lead increases the formation of gastric ulcers by interfering with the oxidative metabolism in the stomach.展开更多
Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to elec...Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to electrocatalyze the oxygen reduction reaction(ORR)through a two-electron(2e^-)pathway is a very promising route to produce H2O2.In this work,we obtained partially oxidized multi-walled carbon nanotubes(MWCNTs)with controlled structure and composition by oxidation with concentrated sulfate and potassium permanganate at 40℃ for 1 h(O-CNTs-40-1).The outer layers of O-CNTs-40-1 are damaged with defects and oxygen-containing functional groups,while the inner layers are maintained intact.The optimized structure and composition of the partially oxidized MWCNTs ensure that O-CNTs-40-1 possesses both a sufficient number of catalytic sites and good conductivity.The results of rotating ring disk electrode measurements reveal that,among all oxidized MWCNTs,O-CNTs-40-1 shows the greatest improvement in hydrogen peroxide selectivity(from ~ 30% to ~ 50%)and electron transfer number(from ~ 3.4 to ~ 3.0)compared to those of the raw MWCNTs.The results of electrochemical impedance spectroscopy measurements indicate that both the charge-transfer and intrinsic resistances of O-CNTs-40-1 are lower than those of the raw MWCNTs and of the other oxidized MWCNTs.Finally,direct tests of the H2O2 production confirm the greatly improved catalytic activity of O-CNTs-40-1 relative to that of the raw MWCNTs.展开更多
Titanium silicalite-1(TS-1)films were synthesized on stainless steel plate,glass slide and monolith supports via an in-situ hydrothermal method.Characterization data showed that the formation of TS-1 films was easier ...Titanium silicalite-1(TS-1)films were synthesized on stainless steel plate,glass slide and monolith supports via an in-situ hydrothermal method.Characterization data showed that the formation of TS-1 films was easier on the porous flat support with rough surface such as monolith than on the smooth non-porous supports like glass slide and stainless steel plate.The film on the monolith had the highest uniformity and smallest size of crystals.The catalytic property of monolithsupported film was tested for epoxidation of allyl chloride(ACH)by H2O2in a fixed bed reactor.Under the condition of a methanol(solvent)/ACH(90% )/H2O2(30% )ratio of 12:1:1,a LHSV of 1.35 h-1and a temperature of 318 K,the conversion of allyl chloride and the selectivity to epichlorohydrin reached 79% and 51% ,respectively.展开更多
A series of bimetallic Pd-Pb catalysts with a constant Pd content of 1 wt%and Pb/Pd atomic ratio from 0 to 1.6 supported on γ-Al2O3 were prepared and used for glycerol oxidation with H2O2 as the oxidizing agent at at...A series of bimetallic Pd-Pb catalysts with a constant Pd content of 1 wt%and Pb/Pd atomic ratio from 0 to 1.6 supported on γ-Al2O3 were prepared and used for glycerol oxidation with H2O2 as the oxidizing agent at atmospheric pressure,45℃ and pH =11.The morphology and dispersion of the catalysts were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDX) and transmission electron microscopy(TEM).The presence of an alloy phase in the bimetallic catalyst was detected by X-ray photoelectron spectroscopy(XPS).Glycerol conversion obtained with the monometallic Pd catalyst was 19%,which was increased to 100%with the addition of Pb.The four bimetallic PdPb catalysts were able to oxidize glycerol to dihydroxyacetone(DIHA) and the selectivity to DIHA reached 59%,58%,34%and 25%for PdPb0.25,PdPb0.50,PdPb1.00 and PdPbl.60 catalysts,respectively.展开更多
Aiming at deep desulfurization of gasoline,three amphiphilic catalysts [C18H37N(CH3)3]3+x [PMo12-xVxO40](x=1,2,or 3) were prepared and characterized.The amphiphilic vanadium(V)-substituted polyoxometalates were dissol...Aiming at deep desulfurization of gasoline,three amphiphilic catalysts [C18H37N(CH3)3]3+x [PMo12-xVxO40](x=1,2,or 3) were prepared and characterized.The amphiphilic vanadium(V)-substituted polyoxometalates were dissolved in water-immiscible ionic liquid([Bmim]PF6),forming a H2O2-in-[Bmim]PF6 emulsion desulfurization system with 30 m% H2O2 serving as the oxidant.The catalytic oxidation of sulfur-containing model oil has been studied in detail under various reaction conditions using this system.The ionic liquid emulsion system showed high catalytic oxidative activity in the treatment of commodity gasoline.Furthermore,the mechanism of catalytic oxidative desulfurization was also elaborated.展开更多
Glycerol is a by-product of biodiesel production and is an important readily available platform chemical.Valorization of glycerol into value-added chemicals has gained immense attention.Herein,we carried out the conve...Glycerol is a by-product of biodiesel production and is an important readily available platform chemical.Valorization of glycerol into value-added chemicals has gained immense attention.Herein,we carried out the conversion of glycerol to formic acid and glycolic acid using H2O2 as an oxidant and metal(Ⅲ)triflate-based catalytic systems.Aluminum(Ⅲ)triflate was found to be the most efficient catalyst for the selective oxidation of glycerol to formic acid.A correlation between the catalytic activity of the metal cations and their hydrolysis constants(Kh)and water exchange rate constants was observed.At 70 ℃,a formic acid yield of up to 72% could be attained within 12 h.The catalyst could be recycled at least five times with a high conversion rate,and hence can also be used for the selective oxidation of other biomass platform molecules.Reaction kinetics and 1H NMR studies showed that the oxidation of glycerol(to formic acid)involved glycerol hydrolysis pathways with glyceric acid and glycolic acid as the main intermediate products.Both the [Al(OH)x]^n+ Lewis acid species and CF3SO3H Brosted acid,which were generated by the in-situ hydrolysis of Al(OTf)3,were responsible for glycerol conversion.The easy availability,high efficiency,and good recyclability of Al(OTf)3 render it suitable for the selective oxidation of glycerol to high value-added products.展开更多
Homogeneous oxidation using an oil-soluble oxidant, tert-amyl hydroperoxide (TAHP), for ultra-deep desulfurization was performed under mild conditions in the presence of molybdenum oxide catalysts. Dibenzothio- phe...Homogeneous oxidation using an oil-soluble oxidant, tert-amyl hydroperoxide (TAHP), for ultra-deep desulfurization was performed under mild conditions in the presence of molybdenum oxide catalysts. Dibenzothio- phene (DBT), benzothiophene (BT) and 4, 6-dimethyl-dibenzothiophene (DMDBT), which are the refractory sulfur compounds for hydrodesulfurization (HDS), were employed as model substrates for a simulated diesel fuel. Activity of molybdenum oxide supported on a macroporous weak acidic resin was investigated. The mass conversion of DBT reached near 100% at 90℃ and a TAHP/DBT molar ratio of 3 with 1% of molybdenum oxide supported on Amberlite IRC-748 resin for 1 h. It was further found that the activities of the model substrates decreased in the or- der of DMDBT 〉DBT 〉BT. In the flow oxidation using TAHP as the oxidant, mass conversion of DBT increased remarkably from 61.3% to 98.5% when dropping the weight hourly space velocity (WHSV) from 40 h^-1 to 10 h^-1. A series of experiments dealt with selectivity of this oxidation using TAHP revealed that the model unsaturated compounds, i.e. 4, 6, 8-trimethyl-2-nonylene, and 2-methylnaphthalene did not affect the oxidation of DBT. Carbazole had nearly no effect on the conversion of DBT using TAHP, but had some influence on the one using tert-butyl hydroperoxide (TBHP). The mass conversion of DBT decreased remarkably from 75.2% to 3.6% when the content of carbazole increased from 0 to 500μg·g^-1. In the flow oxidation using TAHP as the oxidant, the concentration of DBT in model fuels was reduced from 500 μg·g^-1 to 7.2 μg·g^-1 at WHSV of 10 h^-1, and then reduced to 3.8 μg·g^-1 by adsorntion of Al2O3.展开更多
基金Supported by Major Project of Agricultural Biological Breeding(2023ZD0404205)Science and Technology Plan Project of Changsha City(kq2107016)。
文摘This study aimed to understand the growing development and physiological characteristics of seeds harvested different days after pollination and the seedlings emerged from the seeds of yellow-seeded Brassica napus L..Two yellow-seeded cultivars‘Hongyuan 558’and‘Qinyou 806’were selected in this study,and 50 seeds were collected 30,35,and 40 d after pollination,respectively.The seeds were weighed and placed on filter paper for hydroponic experiments.The seed germination rate was determined 3-5 d later.The physiological indicators including superoxide dismutase(SOD),peroxidase(POD),and catalase(CAT)activities and malondialdehyde(MDA)content were measured for the seeds harvested different days after pollination and the 7-day-seedlings emerged from the seeds.The results showed that the seed dry weights and germination rates of both‘Qinyou 806’and‘Hongyuan 558’increased as the days after pollination increased,especially 30-35 d after pollination.The germination rate and dry and fresh weights of the seeds showed no significant differences between the two cultivars,and almost all the seeds germinated 40 d after pollination.As the days after pollination increased,the SOD activities in the seeds of both cultivars first increased and then decreased,reaching their peaks 35 d after pollination,which may be related to encountering adverse stress.The POD activity in the seeds of‘Qinyou 806’kept declining,and that of‘Hongyuan 558’first increased and then decreased,which may be related to the antioxidant mechanism and adaptive regulation.The CAT activities in the seeds of both cultivars first decreased and then increased.The MDA content in the seeds of‘Qinyou 806’first decreased and then increased,while that of‘Hongyuan 558’kept reducing and was the highest in the seeds 30 d after pollination,which indicated‘Hongyuan 558’was mildly affected by the environment and had strong resistance.The activities of SOD and POD in the seedlings of two cultivars that were emerged from the seeds 35-40 d after pollination became weakened,which may be related to their exposure to stress.The CAT activity in the seedlings of‘Hongyuan 558’was generally higher than that of‘Qinyou 806’,indicating that‘Hongyuan 558’had stronger stress resistance.The MDA content in the seedlings emerged from the seeds 35-40 d after pollination showed a decreasing trend,indicating that the seedlings emerged from the seeds harvested at this stage had mild cell membrane damage and enhanced stress resistance.In conclusion,‘Hongyuan 558’had strong environmental adaptability and stress resistance.
文摘The inhibitory effect of the methanolic extract of the root of Aegle marmelos (MERA) and its constituents on the lipid peroxidation in vivo and in vitro were studied. The results suggested that MERA increased the activities of superoxide dismutase (SOD) and GSH-peroxidase in the liver cytosol of mice, but showed no significant effect on the activity of catalase, and one of its major constituents, 4-methoxy-1-methyl-2-quinolone (MMQ) increased the activity of SOD in liver tissue of mice intoxicated with FeCl2-ascorbic acid (AA)-ADP in vivo. Various constituents isolated from the root of title plant inhibited the lipid peroxidation in rat liver homogenate, which was in vitro induced by FeCl2-ascorbic acid, CCl4-NADPH, or ADP- NADPH. Of the test compounds, MMQ and its derivatives integriquinolone were similar to (-tocopherol in inhibiting MDA production in rat liver microsomes induced by Fe2+-ascorbate, CCl4-NADPH, or ADP-NADPH.
基金This research was supported by National Basic Research Program of China (No.2002CB412502)Project of Key Pro-gram of the National Science Foundation of China (No.90411020)Natural Science Foundation of China (No.30400051)
文摘A study was conducted to determine the responses of soil enzymes (invertase, polyphenol oxidase, catalase, and dehydrogenase) to long-term CO2 enrichment at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences (42°24'N, 128°28'E; 738 m in elevation) in the northeast China during 1999-2006. Three treatments of the CO2 enrichment, designed as 500 μmol·mol-1 CO2 open-top chamber (OTC), ambient control chamber and unchambered field (approx. 370 μmol·mol^-1CO2), were conducted with Pinus koraiensis and Pinus sylvestriformis tree species. Soil sampling was made and analyzed separately in spring, summer and autumn in 2006 after the soil enzymes were exposed to elevated CO2 concentration (500 μmol·mol^-1) for eight growing seasons. Results showed that, at elevated CO2 concentration (500 μmol·mol^-1), the activities of invertase (except for the summer samples of P. koraiensis) presented a remarkable decline in all growing seasons, while the activities of dehydrogenase had an increase but only part of the results was remarkable; the activities of polyphenol oxidase in P. sylvestriformis rhizosphere showed a remarkable decrease; the catalase activities increased in spring, while in turn were decline in other seasons. This study also revealed that the soil enzyme activities are significantly correlated with the tree species under the CO2 enhancement.
文摘\ Effects of breviscapine, the active ingredient isolated from Erigeron breviscapus (Vant) Handmazz, on the changes in antioxidant enzyme activity induced by cerebral ischemiareperfusion in rats were explored. It was found that breviscapine improved the activities of superoxide dismutase (SOD), GSHperoxidase and catalase, while decreasing the malondialdehyde (MDA) content in the brain, which was benificial in reducing the damage from cerebral ischemiareperfusion.
基金Project supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (Nos. KZCX3-SW-339 and KSCX1-07) the Ministry of Science and Technology of China (No. 2001CCB00600).
文摘Activities of selected soil enzymes (invertase, acid phosphatase, proteinase,catalase, peroxidase and polyphenoloxi-dase) were determined under different spruce forests withrestoration histories of 5, 13, 18, 23, 27 years and an old growth forest over 400 years old in theeastern Qinghai-Tibetan Plateau, China, and their possible use as indicators of ecosystems healthwere analyzed. Plots 10 X 10 m with 4 replications were established to investigate three hypotheses:soil enzyme activities a) would increase with the restoration process; b) would be greater insurface soils than at lower depths; and c) would be correlated to selected physicochemicalproperties. Results showed that as the forests developed after restoration, invertase and peroxidaseactivities usually increased up to the 23 year point. Also soil enzyme activities were associatedwith surface soils and decreased with depths, suggesting that in earlier restoration stages surfaceaddition of organic fertilizer to soils might be more effective than additions at depth. In the 0-20cm soil, there were significant correlations (P < 0.01 or < 0.05) between some soil enzymeactivities and some selected chemical properties. Therefore, temporal changes in enzyme activitiesshould be included as an indicator when evaluating sustainable forest management practices.
基金supported by the Evonik Industries AGthe Program for New Century Excellent Talents in University(NCET-04-0270)~~
文摘The epoxidation of methyl oleate(MO)was conducted in the presence of aqueous H2O2 as the oxidant and hierarchical TS-1(HTS-1)as the catalyst;the catalyst was synthesized using polyquaternium-6 as the mesopore template.The effects of various parameters,i.e.,H2O2/C=C molar ratio,oxidant concentration,amount of the catalyst,reaction temperature,and time,were systematically studied.Furthermore,response surface methodology(RSM)was used to optimize the conditions to maximize the yield of epoxy MO and to evaluate the significance and interplay of the factors affecting the epoxy MO production.The H2O2/C=C molar ratio and catalyst amount were the determining factors for MO epoxidation,wherein the maximum yield of epoxy MO reached 94.9%over HTS-1 under the optimal conditions.
文摘The performance of UV/H_2O_2, UV/O_3, and UV/H_2O_2/O_3 oxidationsystems for the treatment of municipal solid-waste landfill leachatewas investigated. Main objective of the experiment was to removetotal organic carbon (TOC), non-biodegradable organic compounds(NBDOC) and color. In UV/H_2O_2 oxidation experiment, with theincrease of H_2O_2 dosage, removal efficiencies of TOC and coloralong with the ratio of biochemical oxygen demand (BOD) to chemicaloxygen demand (COD) of the effluent were increased and a betterperformance was obtained than the system H_2O_2 alone.
文摘Photocatalytic hydrogen peroxide(H_(2)O_(2))production from O_(2) and H2O is an ideal process for solar‐to‐chemical energy conversion.Herein,ZnO nanorods are prepared via a simple hydrothermal method for photocatalytic H_(2)O_(2) production.The ZnO nanorods exhibit varied performance with different calcination temperatures.Benefiting from calcination,the separation efficiency of photo‐induced carriers is significantly improved,leading to the superior photocatalytic activity for H_(2)O_(2) production.The H_(2)O_(2) produced by ZnO calcined at 300℃ is 285μmol L^(−1),which is over 5 times larger than that produced by untreated ZnO.This work provides an insight into photocatalytic H2O2 production mechanism by ZnO nanorods,and presents a promising strategy to H2O2 production.
文摘Intracellular reactive oxygen species (ROS) are known to regulate apoptosis. Activation of caspase-9, the initial caspase in the mitochondrial apoptotic cascade, is closely associated with ROS, but it is unclear whether ROS regulate caspase-9 via direct oxidative modification. The present study aims to elucidate the molecular mechanisms by which ROS mediate caspase-9 activation. Our results show that the cellular oxidative state facilitates caspase-9 activation. Hydrogen peroxide treatment causes the activation of caspase-9 and apoptosis, and promotes an interac- tion between easpase-9 and apoptotic protease-activating factor 1 (Apaf-1) via disulfide formation. In addition, in an in vitro mitochondria-free system, the thiol-oxidant diamide promotes auto-cleavage of caspase-9 and the caspase-9/ Apaf-1 interaction by facilitating the formation of disulfide-linked complexes. Finally, a point mutation at C403 of caspase-9 impairs both H2O2-promoted caspase-9 activation and interaction with Apaf-1 through the abolition of disulfide formation. The association between cytochrome c and the C403S mutant is significantly weaker than that between cytochrome c and wild-type caspase-9, indicating that oxidative modification of caspase-9 contributes to apoptosome formation under oxidative stress. Taken together, oxidative modification of caspase-9 by ROS can medi- ate its interaction with Apaf-1, and can thus promote its auto-cleavage and activation. This mechanism may facilitate apoptosome formation and caspase-9 activation under oxidative stress.
文摘The epoxidation of unsaturated fatty acid methyl esters(FAMEs)by peroxyacetic acid generated in situ from hydrogen peroxide and acetic acid was studied in the presence of SO3H-functional Brnsted acidic ionic liquid (IL)[C3SO3HMIM][HSO4]as catalyst.The effects of hydrogen peroxide/ethylenic unsaturation ratio,acetic acid concentration,IL concentration,recycling of the IL catalyst,and temperature on the conversion to oxirane were studied.The kinetics and thermodynamics of unsaturated FAMEs epoxidation and the kinetics of oxirane cleavage of the epoxidized FAMEs by acetic acid were also studied.The conversion of ethylenic unsaturation group to oxirane, the reaction rate of the conversion to oxirane,and the rate of hydrolysis(oxirane cleavage)were higher by using the IL catalyst.
基金Project(50725416) supported by the National Natural Science Foundation for Distinguished Young Scholars of China
文摘Co-intensification was researched to accelerate gold leaching with regards to its electrochemical nature by using anodic intensifiers of heavy metal ions (Pb2+,Bi3+,Tl+,Hg2+ and Ag+) on the basis of hydrogen peroxide assistant leaching on three different types of materials which were classified as a refractory sulphide gold concentrate,an easily leachable sulphide gold concentrate,and a low grade oxide gold ore according to their leaching characteristics.The results showed that,favorable co-intensification effects on the three materials were obtained and leaching time of gold was effectively shortened to no longer than 12 h from 16 to 24 h for hydrogen peroxide assistant leaching.For the five tested heavy metal ions,Bi3+and Tl+ presented co-intensifying effect on all the three materials,and Hg2+ caused co-intensifying effect on both refractory and easily leachable sulphide gold concentrates,and Pb2+ and Ag+ only had co-intensifying effect on the easily leachable sulphide gold concentrate.
基金Supported by the Senate, University of Ibadan, Nigeria partly through SRG grant to SBO UI/SRG/COM/2000/10A
文摘AIM: To investigate the role of reactive oxygen species in the ulcer-aggravating effect of lead in albino rats. METHODS: Albino Wistar rats were randomly divided into three groups and treated orally with 100 mg/L (low dose) or 5000 mg/L (high dose) of lead acetate for 15 wk. A third group received saline and served as control. At the end of wk 15, colorimetric assays were applied to determine the concentrations of total protein and nitrite, the activities of the oxidative enzymes catalase and superoxide dismutase, and lipid peroxidation in homogenized gastric mucosal samples. RESULTS: Exposure of rats to lead significantly increased the gastric mucosal damage caused by acidified ethanol. Although the basal gastric acid secretory rate was not significantly altered, the maximal response of the stomach to histamine was significantly higher in the lead-exposed animals than in the unexposed control group. Exposure to low and high levels of lead significantly increased gastric lipid peroxidation to 183.2% ± 12.7% and 226.1% ± 6.8% of control values respectively (P < 0.0). On the other hand, lead exposure significantly decreased catalase and superoxide dismutase (SOD) activities and the amount of nitrite in gastric mucosal samples. CONCLUSION: Lead increases the formation of gastric ulcers by interfering with the oxidative metabolism in the stomach.
基金supported by the National Natural Science Foundation of China(21576299,21576300)Guangzhou Science and Technology Project(201607010104,201707010079)+3 种基金Science and Technology Planning Project of Guangdong Province(2017A050501009)the National Key Research and Development Program of China(2016YFB0101204)Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program(2016TQ03N322)the fundamental Research Funds for Central Universities(17lgzd14)~~
文摘Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to electrocatalyze the oxygen reduction reaction(ORR)through a two-electron(2e^-)pathway is a very promising route to produce H2O2.In this work,we obtained partially oxidized multi-walled carbon nanotubes(MWCNTs)with controlled structure and composition by oxidation with concentrated sulfate and potassium permanganate at 40℃ for 1 h(O-CNTs-40-1).The outer layers of O-CNTs-40-1 are damaged with defects and oxygen-containing functional groups,while the inner layers are maintained intact.The optimized structure and composition of the partially oxidized MWCNTs ensure that O-CNTs-40-1 possesses both a sufficient number of catalytic sites and good conductivity.The results of rotating ring disk electrode measurements reveal that,among all oxidized MWCNTs,O-CNTs-40-1 shows the greatest improvement in hydrogen peroxide selectivity(from ~ 30% to ~ 50%)and electron transfer number(from ~ 3.4 to ~ 3.0)compared to those of the raw MWCNTs.The results of electrochemical impedance spectroscopy measurements indicate that both the charge-transfer and intrinsic resistances of O-CNTs-40-1 are lower than those of the raw MWCNTs and of the other oxidized MWCNTs.Finally,direct tests of the H2O2 production confirm the greatly improved catalytic activity of O-CNTs-40-1 relative to that of the raw MWCNTs.
基金the Natural Science Foundation of Shanxi Province,China(No.2011011023-2)for financial support
文摘Titanium silicalite-1(TS-1)films were synthesized on stainless steel plate,glass slide and monolith supports via an in-situ hydrothermal method.Characterization data showed that the formation of TS-1 films was easier on the porous flat support with rough surface such as monolith than on the smooth non-porous supports like glass slide and stainless steel plate.The film on the monolith had the highest uniformity and smallest size of crystals.The catalytic property of monolithsupported film was tested for epoxidation of allyl chloride(ACH)by H2O2in a fixed bed reactor.Under the condition of a methanol(solvent)/ACH(90% )/H2O2(30% )ratio of 12:1:1,a LHSV of 1.35 h-1and a temperature of 318 K,the conversion of allyl chloride and the selectivity to epichlorohydrin reached 79% and 51% ,respectively.
基金supported by CONICET(PIP 0276)UNLP(Projects X 700)+1 种基金UNNOBA(SIB 2924/14)Ministry of Education and Sports(Call "Jorge Sabato" Project 44-144-415),Argentina
文摘A series of bimetallic Pd-Pb catalysts with a constant Pd content of 1 wt%and Pb/Pd atomic ratio from 0 to 1.6 supported on γ-Al2O3 were prepared and used for glycerol oxidation with H2O2 as the oxidizing agent at atmospheric pressure,45℃ and pH =11.The morphology and dispersion of the catalysts were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDX) and transmission electron microscopy(TEM).The presence of an alloy phase in the bimetallic catalyst was detected by X-ray photoelectron spectroscopy(XPS).Glycerol conversion obtained with the monometallic Pd catalyst was 19%,which was increased to 100%with the addition of Pb.The four bimetallic PdPb catalysts were able to oxidize glycerol to dihydroxyacetone(DIHA) and the selectivity to DIHA reached 59%,58%,34%and 25%for PdPb0.25,PdPb0.50,PdPb1.00 and PdPbl.60 catalysts,respectively.
基金the National Nature Science Foundation of China(No.51077013,50873026)Production and Research Prospective Joint Project of Jiangsu Province of China(BY2009153)+2 种基金the Key Program for the Scientific Research Guiding Fund of Basic Scientific Research Operation Expenditure,Southeast University(3207040103)333 High-level Talent Training Project,Jiangsu Province of China (BRA2010033)Student Research Training Program of Southeast University(No.091028644) for financial support
文摘Aiming at deep desulfurization of gasoline,three amphiphilic catalysts [C18H37N(CH3)3]3+x [PMo12-xVxO40](x=1,2,or 3) were prepared and characterized.The amphiphilic vanadium(V)-substituted polyoxometalates were dissolved in water-immiscible ionic liquid([Bmim]PF6),forming a H2O2-in-[Bmim]PF6 emulsion desulfurization system with 30 m% H2O2 serving as the oxidant.The catalytic oxidation of sulfur-containing model oil has been studied in detail under various reaction conditions using this system.The ionic liquid emulsion system showed high catalytic oxidative activity in the treatment of commodity gasoline.Furthermore,the mechanism of catalytic oxidative desulfurization was also elaborated.
基金the National Natural Science Foundation of China(21773061,21373082)the Innovation Program of Shanghai Municipal Education Commission(15ZZ031)~~
文摘Glycerol is a by-product of biodiesel production and is an important readily available platform chemical.Valorization of glycerol into value-added chemicals has gained immense attention.Herein,we carried out the conversion of glycerol to formic acid and glycolic acid using H2O2 as an oxidant and metal(Ⅲ)triflate-based catalytic systems.Aluminum(Ⅲ)triflate was found to be the most efficient catalyst for the selective oxidation of glycerol to formic acid.A correlation between the catalytic activity of the metal cations and their hydrolysis constants(Kh)and water exchange rate constants was observed.At 70 ℃,a formic acid yield of up to 72% could be attained within 12 h.The catalyst could be recycled at least five times with a high conversion rate,and hence can also be used for the selective oxidation of other biomass platform molecules.Reaction kinetics and 1H NMR studies showed that the oxidation of glycerol(to formic acid)involved glycerol hydrolysis pathways with glyceric acid and glycolic acid as the main intermediate products.Both the [Al(OH)x]^n+ Lewis acid species and CF3SO3H Brosted acid,which were generated by the in-situ hydrolysis of Al(OTf)3,were responsible for glycerol conversion.The easy availability,high efficiency,and good recyclability of Al(OTf)3 render it suitable for the selective oxidation of glycerol to high value-added products.
基金Supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘Homogeneous oxidation using an oil-soluble oxidant, tert-amyl hydroperoxide (TAHP), for ultra-deep desulfurization was performed under mild conditions in the presence of molybdenum oxide catalysts. Dibenzothio- phene (DBT), benzothiophene (BT) and 4, 6-dimethyl-dibenzothiophene (DMDBT), which are the refractory sulfur compounds for hydrodesulfurization (HDS), were employed as model substrates for a simulated diesel fuel. Activity of molybdenum oxide supported on a macroporous weak acidic resin was investigated. The mass conversion of DBT reached near 100% at 90℃ and a TAHP/DBT molar ratio of 3 with 1% of molybdenum oxide supported on Amberlite IRC-748 resin for 1 h. It was further found that the activities of the model substrates decreased in the or- der of DMDBT 〉DBT 〉BT. In the flow oxidation using TAHP as the oxidant, mass conversion of DBT increased remarkably from 61.3% to 98.5% when dropping the weight hourly space velocity (WHSV) from 40 h^-1 to 10 h^-1. A series of experiments dealt with selectivity of this oxidation using TAHP revealed that the model unsaturated compounds, i.e. 4, 6, 8-trimethyl-2-nonylene, and 2-methylnaphthalene did not affect the oxidation of DBT. Carbazole had nearly no effect on the conversion of DBT using TAHP, but had some influence on the one using tert-butyl hydroperoxide (TBHP). The mass conversion of DBT decreased remarkably from 75.2% to 3.6% when the content of carbazole increased from 0 to 500μg·g^-1. In the flow oxidation using TAHP as the oxidant, the concentration of DBT in model fuels was reduced from 500 μg·g^-1 to 7.2 μg·g^-1 at WHSV of 10 h^-1, and then reduced to 3.8 μg·g^-1 by adsorntion of Al2O3.