期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
化工氨氮废水处理工程实践 被引量:2
1
作者 顾俊杰 何争光 +1 位作者 李玲 王太平 《水处理技术》 CAS CSCD 北大核心 2009年第6期113-115,共3页
介绍了化工氨氮废水处理工程的设计参数与运行情况。实践结果表明,采用混凝气浮两段缺氧好氧为主体工艺对化工氨氮废水处理效果稳定,总排放口出水分别下降到COD≤150mg·L-1,NH3-N≤70mg·L-1,SS≤100mg·L-1,达到了行业排... 介绍了化工氨氮废水处理工程的设计参数与运行情况。实践结果表明,采用混凝气浮两段缺氧好氧为主体工艺对化工氨氮废水处理效果稳定,总排放口出水分别下降到COD≤150mg·L-1,NH3-N≤70mg·L-1,SS≤100mg·L-1,达到了行业排放标准。 展开更多
关键词 化工氮废水 混凝气浮 两段缺氧好氧工艺
下载PDF
MBBR—AMBBR—MBBR组合工艺处理高氨氮化工废水 被引量:3
2
作者 李莉 胡玉 曹俊 《化工环保》 CAS CSCD 北大核心 2019年第2期142-147,共6页
采用移动床生物膜反应器(MBBR)—厌氧移动床生物膜反应器(AMBBR)—MBBR组合工艺处理高氨氮化工废水。反应器采用几何构型优化、比表面积大的新型YD-25生物载体和DNF-203硝化细菌,实现了同步硝化和反硝化,强化了脱氮能力。采用投加菌种... 采用移动床生物膜反应器(MBBR)—厌氧移动床生物膜反应器(AMBBR)—MBBR组合工艺处理高氨氮化工废水。反应器采用几何构型优化、比表面积大的新型YD-25生物载体和DNF-203硝化细菌,实现了同步硝化和反硝化,强化了脱氮能力。采用投加菌种和排泥的方式,经27 d的驯化培养即完成了反应器的挂膜启动。试验结果表明:最佳操作条件为HRT 8 d、MBBR中DO 3 mg/L、进水pH 8.0;在进水COD 2 840~7 437 mg/L、ρ(氨氮)92~179 mg/L、TN 148~258 mg/L、pH 6~8的条件下,出水指标均值为COD 352 mg/L、ρ(氨氮)21.2 mg/L、TN 36 mg/L、pH 7.4,满足排放要求。 展开更多
关键词 移动床生物膜反应器(MBBR) 化工废水 水质
下载PDF
UASB—PACT—A/O—MBR工艺处理高氨氮化工废水工程设计 被引量:4
3
作者 朱炜 张锐 李辉 《给水排水》 CSCD 北大核心 2013年第5期61-63,共3页
以UASB—PACT—A/O—MBR为核心工艺处理高氨氮化工废水,介绍了该工程的总体工艺设计思路、处理效果等。工艺调试运行中发现,厌氧处理系统和PACT池对COD去除率过高,导致后续A/O工艺碳源不足,通过增设厌氧处理系统出水至A池的跨越管,形成... 以UASB—PACT—A/O—MBR为核心工艺处理高氨氮化工废水,介绍了该工程的总体工艺设计思路、处理效果等。工艺调试运行中发现,厌氧处理系统和PACT池对COD去除率过高,导致后续A/O工艺碳源不足,通过增设厌氧处理系统出水至A池的跨越管,形成分段进水,使系统在低碳氮比时达到较好的处理效果;在硝化过程发现碱度消耗较大,投加高纯度片碱补充碱度,投加量为1 kg/m3。运行结果表明,当进水COD和氨氮分别平均为5 813 mg/L和217.9 mg/L时,出水平均分别为100.5 mg/L和1.91 mg/L,可达《化学合成类制药工业水污染物排放标准》(GB 21904—2008)。 展开更多
关键词 化工废水高氮UASB PACT A O MBR回用
下载PDF
氨(NH_3)合成化工技术工艺研究 被引量:1
4
作者 张勇 《化工管理》 2018年第23期135-135,共1页
氨又称为氨气,其化学化学分子式主要为NH3。其在实际社会生产中得到了广泛的应用,现阶段氨的合成化工技术主要是在高温高压条件下,氮和氢在催化剂的作用下进行的合成反应。在实际管理过程中氨的合成受压力、温度及气体组成等方面的影响... 氨又称为氨气,其化学化学分子式主要为NH3。其在实际社会生产中得到了广泛的应用,现阶段氨的合成化工技术主要是在高温高压条件下,氮和氢在催化剂的作用下进行的合成反应。在实际管理过程中氨的合成受压力、温度及气体组成等方面的影响,本文根据结合热力学相关内容,对氨的化学合成装置及净化工艺进行了简单的分析,以便为氨合成工艺的合理应用提供有效的借鉴。 展开更多
关键词 (NH3)合成化工技术 合成工艺
下载PDF
双碳目标下以煤炭为基础的氨合成与清洁利用的未来与挑战 被引量:3
5
作者 吴锦 邹隆志 +5 位作者 陈扬 朱航 梅剑 熊楚豪 吴烨 刘冬 《洁净煤技术》 CAS CSCD 北大核心 2023年第7期21-50,共30页
氨作为重要的化工原料,已有一百多年历史,氨化工为改善人类生产生活做出巨大贡献。然而,随着节能环保要求逐渐严格,新时代新发展方向为氨化工带来新挑战。介绍近年来各类氨化工新技术的发展,分别从氨合成、氨燃烧以及氨利用3个方面综述... 氨作为重要的化工原料,已有一百多年历史,氨化工为改善人类生产生活做出巨大贡献。然而,随着节能环保要求逐渐严格,新时代新发展方向为氨化工带来新挑战。介绍近年来各类氨化工新技术的发展,分别从氨合成、氨燃烧以及氨利用3个方面综述了氨合成及其清洁利用的研究进展。传统Haber-Bosch法合成氨过程会排放大量CO_(2),即便是最先进煤气化或天然气重整制氨工艺,也难以满足双碳目标要求。可再生能源制氢—Haber-Bosch法合成氨是可预见阶段中最有可能规模化应用的绿色合成氨技术。而随着电子技术及各种检测手段飞速发展,化学链、电催化、光催化、等离子体等一批新型合成氨技术备受关注,其摆脱了传统方法高温高压的反应条件,降低了生产过程中污染物排放,为绿色氨合成开辟新道路。与此同时,在碳中和背景下,氨以其储氢量高、理想燃烧产物清洁无污染等特性受到重视。氨通常需借助H_(2)、CH_(4)等燃料进行掺混燃烧或通过催化剂促进燃烧。我国多煤少气,氨与煤混燃也有研究,但其稳定燃烧及产物中NO_(x)控制相对更困难。氨的化学链燃烧具有高燃烧效率、成本低、几乎不产生NO_(x)等优点。此外,近些年氨制氢、氨法碳捕集、氨法脱硫脱硝等化工应用也稳步发展。氨制氢钌基贵金属催化剂产氢效率高,过渡金属催化剂价格低廉,将贵金属和过渡金属的结合也为其发展提供思路;氨法碳捕集技术能有效缓解温室效应,发展较成熟,但仍需优化;氨法脱硫脱硝可选择性降低烟气中SO_(2)、NO_(x),氨/活性炭法、氨/电子束法及氨/脉冲电晕法均有较好发展前景。以上技术的发展进一步拓宽了氨应用领域,为氨化工开辟新方向,未来氨合成与清洁利用研究,还需引入更多可持续发展理念和科技创新,为绿色氨化工注入新的动力。 展开更多
关键词 Haber-Bosch法 化学链 掺混燃烧 催化燃烧 氨化工
下载PDF
Photocatalytic nitrogen fixation: An attractive approach for artificial photocatalysis 被引量:12
6
作者 Rengui Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第7期1180-1188,共9页
Ammonia synthesis via the Haber-Bosch process, which has been heralded as the most important invention of the 20 th century, consumes massive amounts of energy, around 1%–2% of the world’s annual energy... Ammonia synthesis via the Haber-Bosch process, which has been heralded as the most important invention of the 20 th century, consumes massive amounts of energy, around 1%–2% of the world’s annual energy consumption. Developing green and sustainable strategies for NH3 synthesis under ambient conditions, using renewable energy, is strongly desired, by both industrial and sci-entific researchers. Artificial photosynthesis for ammonia synthesis, which has recently attracted significant attention, directly produces NH3 from sunlight, and N2 and H2O via photocatalysis. This has been regarded as an ideal, energy-saving and environmentally-benign process for NH3 produc-tion because it can be performed under normal temperature and atmospheric pressure using re-newable solar energy. Although sustainable developments have been achieved since the pioneering work in 1977, many challenging issues(e.g., adsorption and activation of nitrogen molecules on the surface of photocatalysts under mild conditions) have still not been well solved and the photocata-lytic activities are generally low. In this miniature review, I summarize the most recent progress of photocatalytic N2 fixation for ammonia synthesis, focusing specifically on two attractive aspects for adsorption and activation of nitrogen molecules: one is engineering of oxygen vacancies, and the other is mimicking natural nitrogenase for constructing artificial systems for N2 fixation. Several representative works focusing on these aspects in artificial systems have been reported recently, and it has been demonstrated that both factors play more significant roles in photocatalytic N2 re-duction and fixation under ambient conditions. At the end of the review, I also give some remarks and perspective on the existing challenges and future directions in this field. 展开更多
关键词 PHOTOCATALYSIS Nitrogen fixation Ammonia synthesis Artificial photosynthesis
下载PDF
江西建设万吨级过氧乙酸装置
7
《化工经济技术信息》 2003年第6期13-13,共1页
关键词 工程建设 万吨级过氧乙酸装置 江西昌九生物化工股份有限公司江公司 消毒剂
下载PDF
Inspirations from the scientific discovery of the anammox bacteria: A classic example of how scientific principles can guide discovery and development
8
作者 DANG Hong Yue HUANG Rong Fang JIAO Nian Zhi 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第3期449-455,共7页
Anaerobic ammonium oxidation(anammox) is a relatively new pathway within the N cycle discovered in the late 1990 s. This eminent discovery not only modified the classical theory of biological metabolism and matter cyc... Anaerobic ammonium oxidation(anammox) is a relatively new pathway within the N cycle discovered in the late 1990 s. This eminent discovery not only modified the classical theory of biological metabolism and matter cycling, but also profoundly influenced our understanding of the energy sources for life. A new member of chemolithoautotrophic microorganisms capable of carbon fixation was found in the vast deep dark ocean. If the discovery of the chemosynthetic ecosystems in the deep-sea hydrothermal vent environments once challenged the old dogma "all living things depend on the sun for growth," the discovery of anammox bacteria that are widespread in anoxic environments fortifies the victory over this dogma. Anammox bacteria catalyze the oxidization of NH_4^+ by using NO_2^- as the terminal electron acceptor to produce N_2. Similar to the denitrifying microorganisms, anammox bacteria play a biogeochemical role of inorganic N removal from the environment. However, unlike heterotrophic denitrifying bacteria, anammox bacteria are chemolithoautotrophs that can generate transmembrane proton motive force, synthesize ATP molecules and further carry out CO_2 fixation through metabolic energy harvested from the anammox process. Although anammox bacteria and the subsequently found ammonia-oxidizing archaea(AOA), another very important group of N cycling microorganisms are both chemolithoautotrophs, AOA use ammonia rather than ammonium as the electron donor and O_2 as the terminal electron acceptor in their energy metabolism. Therefore, the ecological process of AOA mainly takes place in oxic seawater and sediments, while anammox bacteria are widely distributed in anoxic water and sediments, and even in some typical extreme marine environments such as the deep-sea hydrothermal vents and methane seeps. Studies have shown that the anammox process may be responsible for 30%–70% N_2 production in the ocean. In environmental engineering related to nitrogenous wastewater treatment, anammox provides a new technology with low energy consumption, low cost, and high efficiency that can achieve energy saving and emission reduction. However, the discovery of anammox bacteria is actually a hard-won achievement. Early in the 1960 s, the possibility of the anammox biogeochemical process was predicted to exist according to some marine geochemical data. Then in the 1970 s, the existence of anammox bacteria was further predicted via chemical reaction thermodynamic calculations. However, these microorganisms were not found in subsequent decades. What hindered the discovery of anammox bacteria, an important N cycling microbial group widespread in hypoxic and anoxic environments? What are the factors that finally led to their discovery? What are the inspirations that the analyses of these questions can bring to scientific research? This review article will analyze and elucidate the above questions by presenting the fundamental physiological and ecological characteristics of the marine anammox bacteria and the principles of scientific research. 展开更多
关键词 Anaerobic ammonium oxidation Marine nitrogen cycle Chemolithoautotrophy Wastewater treatment Scientific inspiration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部