期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
略谈我县秸秆氨化工艺
1
作者 轩惠敏 吴斌安 《新疆畜牧业》 1991年第1期41-42,共2页
农作物秸秆是农区数量最大的饲料资源,秸秆通常主要用作燃料、肥料、饲料。但是从能源和氮能的利用效率看,秸秆先作饲料再作肥料最合理,这样可使能源、氮能得到充分利用;秸秆通过反刍家畜把营养物质转化成肉、奶、毛、皮、经济效益等:... 农作物秸秆是农区数量最大的饲料资源,秸秆通常主要用作燃料、肥料、饲料。但是从能源和氮能的利用效率看,秸秆先作饲料再作肥料最合理,这样可使能源、氮能得到充分利用;秸秆通过反刍家畜把营养物质转化成肉、奶、毛、皮、经济效益等:有助于增加农区饲草资源、发展农区畜牧业、 展开更多
关键词 秸秆 氨化工艺
下载PDF
氨化秸秆工艺及处理机的研究 被引量:3
2
作者 汝医 李朝科 《农业机械学报》 EI CAS CSCD 北大核心 2001年第4期64-66,67,共4页
开发研制了一种新型粗饲料加工机具——氨化秸秆处理机。介绍了氨化秸秆的工艺路线 ,机具的设计思想、结构原理、技术特征、主要性能指标和市场前景。试验结果表明 ,该机实现了氨化处理秸秆方法的机械化作业 ,具有高效、低耗、产业化等... 开发研制了一种新型粗饲料加工机具——氨化秸秆处理机。介绍了氨化秸秆的工艺路线 ,机具的设计思想、结构原理、技术特征、主要性能指标和市场前景。试验结果表明 ,该机实现了氨化处理秸秆方法的机械化作业 ,具有高效、低耗、产业化等优点 ,是适合于我国农业可持续发展。 展开更多
关键词 氨化工艺 秸杆 饲料加工设备
下载PDF
氨化炉氨化秸秆工艺
3
作者 夏建平 刘向阳 +1 位作者 谭奈林 郭佩玉 《北京农业工程大学学报》 1995年第4期53-59,共7页
通过模拟氨化炉试验,证明氨化炉可以用碳酸氢铵为氨源处理秸秆,而不能用尿素。从提高氨化秸秆的粗蛋白含量和氨化秸秆在动物瘤胃中的干物质消失率考虑,用氨化炉处理秸秆的适宜条件为:温度90℃,处理时间15 h。将氨化炉加热方式改为以蒸... 通过模拟氨化炉试验,证明氨化炉可以用碳酸氢铵为氨源处理秸秆,而不能用尿素。从提高氨化秸秆的粗蛋白含量和氨化秸秆在动物瘤胃中的干物质消失率考虑,用氨化炉处理秸秆的适宜条件为:温度90℃,处理时间15 h。将氨化炉加热方式改为以蒸气为传热介质,直接导入秸秆垛内部,使热量从秸秆垛内向外传导,可更为有效地利用能源并缩短氨化时间。 展开更多
关键词 饲料 氨化 氨化 秸秆 氨化工艺
下载PDF
机械氨化玉米秸秆技术
4
作者 李晓庆 《农机试验与推广》 1991年第4期31-32,共2页
关键词 氨化 玉米秸杆 饲料 氨化工艺
下载PDF
海化魁星20万t/a硫酸钾复合肥项目投产暨10万t/a硫酸开工仪式隆重举行
5
作者 李德胜 刘鹏 《山东化工》 CAS 2004年第4期56-56,共1页
关键词 泰安海化新星肥业有限公司 硫酸钾复合肥 碳化氨水 氨化造粒新工艺 硫磺
下载PDF
影响尿基复合肥造粒的主要因素分析 被引量:1
6
作者 刘洪滨 《中国盐业》 2014年第9期39-41,共3页
针对转鼓氨化造粒工艺生产尿基复合肥所存在的问题,分析造粒温度、湿度、物料的溶解度、黏度、氨化程度、返料状况、以及装置影响造粒的主要因素,提出控制造粒温度与湿度的方法,为生产尿基复合肥工艺参数的优化提供了可借鉴的思路。
关键词 尿基复合肥 转鼓氨化造粒工艺 影响造粒的因素
原文传递
Inspirations from the scientific discovery of the anammox bacteria: A classic example of how scientific principles can guide discovery and development
7
作者 DANG Hong Yue HUANG Rong Fang JIAO Nian Zhi 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第3期449-455,共7页
Anaerobic ammonium oxidation(anammox) is a relatively new pathway within the N cycle discovered in the late 1990 s. This eminent discovery not only modified the classical theory of biological metabolism and matter cyc... Anaerobic ammonium oxidation(anammox) is a relatively new pathway within the N cycle discovered in the late 1990 s. This eminent discovery not only modified the classical theory of biological metabolism and matter cycling, but also profoundly influenced our understanding of the energy sources for life. A new member of chemolithoautotrophic microorganisms capable of carbon fixation was found in the vast deep dark ocean. If the discovery of the chemosynthetic ecosystems in the deep-sea hydrothermal vent environments once challenged the old dogma "all living things depend on the sun for growth," the discovery of anammox bacteria that are widespread in anoxic environments fortifies the victory over this dogma. Anammox bacteria catalyze the oxidization of NH_4^+ by using NO_2^- as the terminal electron acceptor to produce N_2. Similar to the denitrifying microorganisms, anammox bacteria play a biogeochemical role of inorganic N removal from the environment. However, unlike heterotrophic denitrifying bacteria, anammox bacteria are chemolithoautotrophs that can generate transmembrane proton motive force, synthesize ATP molecules and further carry out CO_2 fixation through metabolic energy harvested from the anammox process. Although anammox bacteria and the subsequently found ammonia-oxidizing archaea(AOA), another very important group of N cycling microorganisms are both chemolithoautotrophs, AOA use ammonia rather than ammonium as the electron donor and O_2 as the terminal electron acceptor in their energy metabolism. Therefore, the ecological process of AOA mainly takes place in oxic seawater and sediments, while anammox bacteria are widely distributed in anoxic water and sediments, and even in some typical extreme marine environments such as the deep-sea hydrothermal vents and methane seeps. Studies have shown that the anammox process may be responsible for 30%–70% N_2 production in the ocean. In environmental engineering related to nitrogenous wastewater treatment, anammox provides a new technology with low energy consumption, low cost, and high efficiency that can achieve energy saving and emission reduction. However, the discovery of anammox bacteria is actually a hard-won achievement. Early in the 1960 s, the possibility of the anammox biogeochemical process was predicted to exist according to some marine geochemical data. Then in the 1970 s, the existence of anammox bacteria was further predicted via chemical reaction thermodynamic calculations. However, these microorganisms were not found in subsequent decades. What hindered the discovery of anammox bacteria, an important N cycling microbial group widespread in hypoxic and anoxic environments? What are the factors that finally led to their discovery? What are the inspirations that the analyses of these questions can bring to scientific research? This review article will analyze and elucidate the above questions by presenting the fundamental physiological and ecological characteristics of the marine anammox bacteria and the principles of scientific research. 展开更多
关键词 Anaerobic ammonium oxidation Marine nitrogen cycle Chemolithoautotrophy Wastewater treatment Scientific inspiration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部