Electrocatalytic ammonia synthesis under mild conditions is an attractive and challenging process in the earth’s nitrogen cycle,which requires efficient and stable catalysts to reduce the overpotential.The N2 activat...Electrocatalytic ammonia synthesis under mild conditions is an attractive and challenging process in the earth’s nitrogen cycle,which requires efficient and stable catalysts to reduce the overpotential.The N2 activation and reduction overpotential of different Ti3C2O2-supported transition metal(TM)(Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Mo,Ru,Rh,Pd,Ag,Cd,and Au)single-atom catalysts have been analyzed in terms of the Gibbs free energies calculated using the density functional theory(DFT).The end-on N2 adsorption was more energetically favorable,and the negative free energies represented good N2 activation performance,especially in the presence Fe/Ti3C2O2(﹣0.75 eV).The overpotentials of Fe/Ti3C2O2,Co/Ti3C2O2,Ru/Ti3C2O2,and Rh/Ti3C2O2 were 0.92,0.89,1.16,and 0.84 eV,respectively.The potential required for ammonia synthesis was different for different TMs and ranged from 0.68 to 2.33 eV.Two possible potential-limiting steps may be involved in the process:(i)hydrogenation of N2 to*NNH and(ii)hydrogenation of*NH2 to ammonia.These catalysts can change the reaction pathway and avoid the traditional N–N bond-breaking barrier.It also simplifies the understanding of the relationship between the Gibbs free energy and overpotential,which is a significant factor in the rational designing and large-scale screening of catalysts for the electrocatalytic ammonia synthesis.展开更多
MOiler cells are the main glial cells in the retina, and are related to plexiform layer activity. Recent studies have demonstrated that Muller cells are involved in the synaptic conservation, plasticity, development a...MOiler cells are the main glial cells in the retina, and are related to plexiform layer activity. Recent studies have demonstrated that Muller cells are involved in the synaptic conservation, plasticity, development and metabolism of glutamate. During turtle retinal development, layers, cells and synapses appear at different times. The aim of this research is to study the emergence of Muller cells during embryonic development and their relationship with the synaptogenesis. The authors used retinas from Trachemys scripta elegans embryos at stages S14, 18, 20, 23, and 26. Some retinas were processed with immunocytochemistry in order to detect the presence of glutamine synthetase in Muller cells, which was used as a marker of these ceils. Other retinas from the same stages were processed for ultrastructural studies. Samples were observed in confocal and transmission electron microscopes, respectively. The present results show that glutamine synthetase expression in MOiler cells occurs at S18, before the emergence of the retinal layers and the early synapses.展开更多
A reaction coupling system of transesterification and methoxycarbonylation with methyl phenyl carbonate (MPC) as intermediate was established to efficiently prepare 1,6-hexamethylene diurethane (HDU) from 1,6- bex...A reaction coupling system of transesterification and methoxycarbonylation with methyl phenyl carbonate (MPC) as intermediate was established to efficiently prepare 1,6-hexamethylene diurethane (HDU) from 1,6- bexametbylene diamine (HDA). The feasibility of the system was explored using the thermodynamics analysis, the reaction mechanism and the experiment results. The optimal reaction was carried out to get higher HDU yield. The thermodynamic analysis showed that the metboxycarbonylation of HDA with MPC, the Gibbs free energy of which was negative, was a spontaneous process. Furthermore, the equilibrium constant of the methoxycarbonylation of HDA with MPC was much greater than that of the transesterification of dimethyl carbonate (DMC) with phenol, so the reaction coupling could be realized under mild conditions. The reaction mechanism analysis indicated that phenoxy anion was the key spedes for reaction coupling. Higher MPC concentration was detected when sodium phenoxide was used as transesterification reactant with DMC, since the phenoxy anion of sodium phenoxide could be dissociated more easily. Sodium pbenoxide was more suitable to prepare HHDU through reaction coupling. A yield of HDU as high as 98.3% could be reached under the optimal conditions of mPhONa/mDMC = 0.027 and nDMC/nHDa = 8/1 at 90 ℃ in 2 h.展开更多
Tremendous efforts have been devoted to explore energy-efficient strategies of ammonia synthesis to replace Haber-Bosch process which accounts for 1.4% of the annual energy consumption. In this study, atomically dispe...Tremendous efforts have been devoted to explore energy-efficient strategies of ammonia synthesis to replace Haber-Bosch process which accounts for 1.4% of the annual energy consumption. In this study, atomically dispersed Au_1 catalyst is synthesized and applied in electrochemical synthesis of ammonia under ambient conditions. A high NH+4 Faradaic efficiency of 11.1 % achieved by our Au_1 catalyst surpasses most of reported catalysts under comparable conditions. Benefiting from efficient atom utilization, an NH+4 yield rate of 1,305 μg h-1 mg-1Au has been reached, which is roughly 22.5 times as high as that by sup- ported Au nanoparticles. We also demonstrate that by employing our Au_1 catalyst, NH+4 can be electro- chemically produced directly from N_2 and H_2 with an energy utilization rate of 4.02 mmol kJ-1. Our study provides a possibility of replacing the Haber-Bosch process with environmentally benign and energy-efficient electrochemical strategies.展开更多
基金financially supported by the National Natural Science Foundation of China(21625604,21776251,21671172,21706229,21878272)~~
文摘Electrocatalytic ammonia synthesis under mild conditions is an attractive and challenging process in the earth’s nitrogen cycle,which requires efficient and stable catalysts to reduce the overpotential.The N2 activation and reduction overpotential of different Ti3C2O2-supported transition metal(TM)(Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Mo,Ru,Rh,Pd,Ag,Cd,and Au)single-atom catalysts have been analyzed in terms of the Gibbs free energies calculated using the density functional theory(DFT).The end-on N2 adsorption was more energetically favorable,and the negative free energies represented good N2 activation performance,especially in the presence Fe/Ti3C2O2(﹣0.75 eV).The overpotentials of Fe/Ti3C2O2,Co/Ti3C2O2,Ru/Ti3C2O2,and Rh/Ti3C2O2 were 0.92,0.89,1.16,and 0.84 eV,respectively.The potential required for ammonia synthesis was different for different TMs and ranged from 0.68 to 2.33 eV.Two possible potential-limiting steps may be involved in the process:(i)hydrogenation of N2 to*NNH and(ii)hydrogenation of*NH2 to ammonia.These catalysts can change the reaction pathway and avoid the traditional N–N bond-breaking barrier.It also simplifies the understanding of the relationship between the Gibbs free energy and overpotential,which is a significant factor in the rational designing and large-scale screening of catalysts for the electrocatalytic ammonia synthesis.
文摘MOiler cells are the main glial cells in the retina, and are related to plexiform layer activity. Recent studies have demonstrated that Muller cells are involved in the synaptic conservation, plasticity, development and metabolism of glutamate. During turtle retinal development, layers, cells and synapses appear at different times. The aim of this research is to study the emergence of Muller cells during embryonic development and their relationship with the synaptogenesis. The authors used retinas from Trachemys scripta elegans embryos at stages S14, 18, 20, 23, and 26. Some retinas were processed with immunocytochemistry in order to detect the presence of glutamine synthetase in Muller cells, which was used as a marker of these ceils. Other retinas from the same stages were processed for ultrastructural studies. Samples were observed in confocal and transmission electron microscopes, respectively. The present results show that glutamine synthetase expression in MOiler cells occurs at S18, before the emergence of the retinal layers and the early synapses.
基金Supported by the National Natural Science Foundation of China(21276126,21306089)the Jiangsu Province Higher Education Natural Science Foundation(09KJA530004,13KJB530006)
文摘A reaction coupling system of transesterification and methoxycarbonylation with methyl phenyl carbonate (MPC) as intermediate was established to efficiently prepare 1,6-hexamethylene diurethane (HDU) from 1,6- bexametbylene diamine (HDA). The feasibility of the system was explored using the thermodynamics analysis, the reaction mechanism and the experiment results. The optimal reaction was carried out to get higher HDU yield. The thermodynamic analysis showed that the metboxycarbonylation of HDA with MPC, the Gibbs free energy of which was negative, was a spontaneous process. Furthermore, the equilibrium constant of the methoxycarbonylation of HDA with MPC was much greater than that of the transesterification of dimethyl carbonate (DMC) with phenol, so the reaction coupling could be realized under mild conditions. The reaction mechanism analysis indicated that phenoxy anion was the key spedes for reaction coupling. Higher MPC concentration was detected when sodium phenoxide was used as transesterification reactant with DMC, since the phenoxy anion of sodium phenoxide could be dissociated more easily. Sodium pbenoxide was more suitable to prepare HHDU through reaction coupling. A yield of HDU as high as 98.3% could be reached under the optimal conditions of mPhONa/mDMC = 0.027 and nDMC/nHDa = 8/1 at 90 ℃ in 2 h.
基金supported by the National Key R&D Program of China (2017YFA0208300)the National Natural Science Foundation of China (21522107, 21671180, 21521091, 21390393, U1463202, and 21522305)
文摘Tremendous efforts have been devoted to explore energy-efficient strategies of ammonia synthesis to replace Haber-Bosch process which accounts for 1.4% of the annual energy consumption. In this study, atomically dispersed Au_1 catalyst is synthesized and applied in electrochemical synthesis of ammonia under ambient conditions. A high NH+4 Faradaic efficiency of 11.1 % achieved by our Au_1 catalyst surpasses most of reported catalysts under comparable conditions. Benefiting from efficient atom utilization, an NH+4 yield rate of 1,305 μg h-1 mg-1Au has been reached, which is roughly 22.5 times as high as that by sup- ported Au nanoparticles. We also demonstrate that by employing our Au_1 catalyst, NH+4 can be electro- chemically produced directly from N_2 and H_2 with an energy utilization rate of 4.02 mmol kJ-1. Our study provides a possibility of replacing the Haber-Bosch process with environmentally benign and energy-efficient electrochemical strategies.