AIM: To evaluate the effect of pyrrolidine dithio- carbamate (PDTC; an NF-κB inhibitor) administered at low (50 mg/kg) and high (100 mg/kg) doses in suppressing colitis in mice with dextran sodium sulfate (DSS)-induc...AIM: To evaluate the effect of pyrrolidine dithio- carbamate (PDTC; an NF-κB inhibitor) administered at low (50 mg/kg) and high (100 mg/kg) doses in suppressing colitis in mice with dextran sodium sulfate (DSS)-induced colitis. METHODS: Mice were divided into a DSS-untreated group (normal group), DSS-treated control group, DSS+PDTC-treated groupⅠ(low-dose group), and DSS+PDTC-treated groupⅡ (high-dose group). In each group, the disease activity index score (DAI score), intestinal length, histological score, and the levels of activated NF-κB and inflammatory cytokines (IL-1β and TNF-α) in tissue were measured. RESULTS: The DSS+PDTC-treated groupⅡ exhibited suppression of shortening of intestinal length and reduction of DAI score. Activated NF-κB level and IL-1β and TNF-α levels were significantly lower in DSS+PDTC- treated groupⅡ. CONCLUSION: These findings suggest that PDTC is useful for the treatment of ulcerative colitis.展开更多
The adsorption mechanism of O-isopropyl-S-[2-(hydroxyimino) propyl] dithiocarbonate ester(IPXPO) to chalcopyrite was investigated by using contact angle, in-situ atomic force microscopy(in-situ AFM), cyclic voltammetr...The adsorption mechanism of O-isopropyl-S-[2-(hydroxyimino) propyl] dithiocarbonate ester(IPXPO) to chalcopyrite was investigated by using contact angle, in-situ atomic force microscopy(in-situ AFM), cyclic voltammetry(CV) and X-ray photoelectron spectroscopy(XPS). The results of contact angle and in-situ AFM demonstrated that IPXPO adsorbed on chalcopyrite increases surface hydrophobicity and roughness. It was found by CV experiments that a layer passive film was formed. The results of XPS spectra further revealed that the thiol S atom, oxime N atom, and O atom in the IPXPO molecule might react with copper atoms to form Cu-S, Cu-N, and Cu-O bonds, respectively. An artificial mixed minerals flotation test indicated that under the condition of pH=6.79 and IPXPO initial concentration 5×10^(-5)mol/L, the flotation recovery of chalcopyrite reached about 90%, while for pyrite only 25%, suggesting that IPXPO is an excellent collector for flotation separation and enrichment of chalcopyrite.展开更多
As a novel collector, O-isopropyl-N,N-diethyl thionocarbamate(IPDTC) was designed and synthesized for copper-sulfur flotation separation. Density functional theory calculations were performed to investigate the electr...As a novel collector, O-isopropyl-N,N-diethyl thionocarbamate(IPDTC) was designed and synthesized for copper-sulfur flotation separation. Density functional theory calculations were performed to investigate the electronic structures of IPDTC. The results showed that IPDTC had higher energy of the highest occupied molecular orbital but lower electronegativity than O-isopropyl-N-ethyl thionocarbamate(Z-200). It was predicted that IPDTC had strong collection ability according to the reaction energy criteria. Flotation results demonstrated that the collecting ability of IPDTC to chalcopyrite and pyrite was stronger than that of Z-200. Then, the flotation mechanism was analyzed by measurements of surface tension, adsorption capacity, XPS, FTIR and zeta potential. These results indicated that IPDTC could reduce the solution surface tension. The adsorption capacity of IPDTC on chalcopyrite was higher than that on pyrite, consistent with the results of the flotation tests. FTIR, zeta potential and XPS results also demonstrated that IPDTC was strongly absorbed on the chalcopyrite surface by formation of Cu—S—C bonds, but showed a weak affinity on the pyrite surface.展开更多
A magnetic CoFe2O4/Cd S nanocomposite was prepared via one-step hydrothermal decomposition of cadmium diethanoldithiocarbamate complex on the surface of CoFe2O4 nanoparticles at a low temperature of 200 ℃.The nanocom...A magnetic CoFe2O4/Cd S nanocomposite was prepared via one-step hydrothermal decomposition of cadmium diethanoldithiocarbamate complex on the surface of CoFe2O4 nanoparticles at a low temperature of 200 ℃.The nanocomposite was characterised by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy,energy-dispersive X-ray spectroscopy(EDX),UV-visible spectroscopy,transmission electron microscopy(TEM),N2 gas sorption analysis,X-ray photoelectron spectroscopy(XPS),and vibrating sample magnetometry.The FT-IR,XRD,EDX and XPS results confirmed the formation of the CoFe2O4/Cd S nanocomposite.Based on the TEM analysis,the CoFe2O4/Cd S nanocomposite constituted nearly uniform,sphere-like nanoparticles of ~20 nm in size.The optical absorption spectrum of the CoFe2O4/Cd S nanocomposite displayed a band gap of 2.21 e V,which made it a suitable candidate for application in sono/photocatalytic degradation of organic pollutants.Accordingly,the sonocatalytic activity of the CoFe2O4/Cd S nanocomposite was evaluated towards the H2O2-assisted degradation of methylene blue,rhodamine B,and methyl orange under ultrasonic irradiation.The nanocomposite displayed excellent sonocatalytic activity towards the degradation of all dyes examined—the dyes were completely decomposed within 5–9 min.Furthermore,a comparison study revealed that the CoFe2O4/Cd S nanocomposite is a more efficient sonocatalyst than pure Cd S;thus,adopting the nanocomposite approach is an excellent means to improve the sonoactivity of Cd S.Moreover,the magnetic properties displayed by the CoFe2O4/Cd S nanocomposite allow easy retrieval of the catalyst from the reaction mixture for subsequent uses.展开更多
文摘AIM: To evaluate the effect of pyrrolidine dithio- carbamate (PDTC; an NF-κB inhibitor) administered at low (50 mg/kg) and high (100 mg/kg) doses in suppressing colitis in mice with dextran sodium sulfate (DSS)-induced colitis. METHODS: Mice were divided into a DSS-untreated group (normal group), DSS-treated control group, DSS+PDTC-treated groupⅠ(low-dose group), and DSS+PDTC-treated groupⅡ (high-dose group). In each group, the disease activity index score (DAI score), intestinal length, histological score, and the levels of activated NF-κB and inflammatory cytokines (IL-1β and TNF-α) in tissue were measured. RESULTS: The DSS+PDTC-treated groupⅡ exhibited suppression of shortening of intestinal length and reduction of DAI score. Activated NF-κB level and IL-1β and TNF-α levels were significantly lower in DSS+PDTC- treated groupⅡ. CONCLUSION: These findings suggest that PDTC is useful for the treatment of ulcerative colitis.
基金Projects(22108114, 5180031184) supported by the National Natural Science Foundation of China。
文摘The adsorption mechanism of O-isopropyl-S-[2-(hydroxyimino) propyl] dithiocarbonate ester(IPXPO) to chalcopyrite was investigated by using contact angle, in-situ atomic force microscopy(in-situ AFM), cyclic voltammetry(CV) and X-ray photoelectron spectroscopy(XPS). The results of contact angle and in-situ AFM demonstrated that IPXPO adsorbed on chalcopyrite increases surface hydrophobicity and roughness. It was found by CV experiments that a layer passive film was formed. The results of XPS spectra further revealed that the thiol S atom, oxime N atom, and O atom in the IPXPO molecule might react with copper atoms to form Cu-S, Cu-N, and Cu-O bonds, respectively. An artificial mixed minerals flotation test indicated that under the condition of pH=6.79 and IPXPO initial concentration 5×10^(-5)mol/L, the flotation recovery of chalcopyrite reached about 90%, while for pyrite only 25%, suggesting that IPXPO is an excellent collector for flotation separation and enrichment of chalcopyrite.
基金financial supports from the Open Foundation of State Key Laboratory of Mineral Processing,China (Nos.BGRIMM-KJSKL-2019-06,BGRIMMKJSKL-2022-13)the Open Fund of State Key Laboratory of Comprehensive Utilization of Low-Grade,China (No.ZJKY2017(B)KFJJ003)。
文摘As a novel collector, O-isopropyl-N,N-diethyl thionocarbamate(IPDTC) was designed and synthesized for copper-sulfur flotation separation. Density functional theory calculations were performed to investigate the electronic structures of IPDTC. The results showed that IPDTC had higher energy of the highest occupied molecular orbital but lower electronegativity than O-isopropyl-N-ethyl thionocarbamate(Z-200). It was predicted that IPDTC had strong collection ability according to the reaction energy criteria. Flotation results demonstrated that the collecting ability of IPDTC to chalcopyrite and pyrite was stronger than that of Z-200. Then, the flotation mechanism was analyzed by measurements of surface tension, adsorption capacity, XPS, FTIR and zeta potential. These results indicated that IPDTC could reduce the solution surface tension. The adsorption capacity of IPDTC on chalcopyrite was higher than that on pyrite, consistent with the results of the flotation tests. FTIR, zeta potential and XPS results also demonstrated that IPDTC was strongly absorbed on the chalcopyrite surface by formation of Cu—S—C bonds, but showed a weak affinity on the pyrite surface.
基金the Lorestan University and Iran Nanotechnology Initiative Council (INIC) for their financial support
文摘A magnetic CoFe2O4/Cd S nanocomposite was prepared via one-step hydrothermal decomposition of cadmium diethanoldithiocarbamate complex on the surface of CoFe2O4 nanoparticles at a low temperature of 200 ℃.The nanocomposite was characterised by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),scanning electron microscopy,energy-dispersive X-ray spectroscopy(EDX),UV-visible spectroscopy,transmission electron microscopy(TEM),N2 gas sorption analysis,X-ray photoelectron spectroscopy(XPS),and vibrating sample magnetometry.The FT-IR,XRD,EDX and XPS results confirmed the formation of the CoFe2O4/Cd S nanocomposite.Based on the TEM analysis,the CoFe2O4/Cd S nanocomposite constituted nearly uniform,sphere-like nanoparticles of ~20 nm in size.The optical absorption spectrum of the CoFe2O4/Cd S nanocomposite displayed a band gap of 2.21 e V,which made it a suitable candidate for application in sono/photocatalytic degradation of organic pollutants.Accordingly,the sonocatalytic activity of the CoFe2O4/Cd S nanocomposite was evaluated towards the H2O2-assisted degradation of methylene blue,rhodamine B,and methyl orange under ultrasonic irradiation.The nanocomposite displayed excellent sonocatalytic activity towards the degradation of all dyes examined—the dyes were completely decomposed within 5–9 min.Furthermore,a comparison study revealed that the CoFe2O4/Cd S nanocomposite is a more efficient sonocatalyst than pure Cd S;thus,adopting the nanocomposite approach is an excellent means to improve the sonoactivity of Cd S.Moreover,the magnetic properties displayed by the CoFe2O4/Cd S nanocomposite allow easy retrieval of the catalyst from the reaction mixture for subsequent uses.