[Objective] This study aimed to perform the bioinformatics analysis of Zinc transporter (ZnT) from Baoding Alfalfa. [Method] Based on the amino acid sequence, the physical and chemical properties, hydrophilicity/hyd...[Objective] This study aimed to perform the bioinformatics analysis of Zinc transporter (ZnT) from Baoding Alfalfa. [Method] Based on the amino acid sequence, the physical and chemical properties, hydrophilicity/hydrophobicity, secondary structure of ZnT from Baoding alfalfa were predicted by a series of bioinformatics software. And the transmembrane domains were predicted by using different online tools. [Result] ZnT is a hydrophobic protein containing 408 amino acids with the theoretical pl of 5.94, and it has 7 potential transmembrane hydrophobic regions. In the sec- ondary structure, co-helix (Hh) accounted for 48.04%, extended strand (Ee) for 9.56%, random coil (Cc) for 42.40%, which was accored with the characteristic of transmembrane protein. [Conclusion] mZnT is a member of CDF family, responsible for transporting Zn^2+ out of the cell membrane to reduce the concentration and toxicity of Zn^2+.展开更多
CME2007第二届国际复合医学工程学术大会暨展览会IEEE/ICME International Conference on Complex Medical Engineering-CME2007会议时间:2007年5月23日—27日(其中:报到/布展:2007年5月21-22日会议/展出:2007年5月23-25日旅游:2007年5...CME2007第二届国际复合医学工程学术大会暨展览会IEEE/ICME International Conference on Complex Medical Engineering-CME2007会议时间:2007年5月23日—27日(其中:报到/布展:2007年5月21-22日会议/展出:2007年5月23-25日旅游:2007年5月26-27日)会议地点:北京京丰宾馆(丰台区丰台路75号)展开更多
The myosin heavy chain(MyHC)is one of the major structural and contracting proteins of muscle.We have isolated the cDNA clone encoding MyHC of the grass carp,Ctenopharyngodon idella. The sequence comprises 5 934 bp,in...The myosin heavy chain(MyHC)is one of the major structural and contracting proteins of muscle.We have isolated the cDNA clone encoding MyHC of the grass carp,Ctenopharyngodon idella. The sequence comprises 5 934 bp,including a 5 814 bp open reading frame encoding an amino acid sequence of 1 937 residues.The deduced amino acid sequence showed 69%homology to rabbit fast skeletal MyHC and 73%–76%homology to the MyHCs from the mandarin fish,walleye pollack,white croaker,chum salmon,and carp.The putative sequences of subfragment-1 and the light meromyosin region showed 61.4%–80%homology to the corresponding regions of other fish MyHCs.The tissue-specific and developmental stage-specific expressions of the MyHC gene were analyzed by quantitative real-time PCR.The MyHC gene showed the highest expression in the muscles compared with the kidney,spleen and intestine.Developmentally,there was a gradual increase in MyHC mRNA expression from the neural formation stage to the tail bud stage.The highest expression was detected in hatching larva.Our work on the MyHC gene from the grass carp has provided useful information for fish molecular biology and fish genomics.展开更多
Chloroplasts are organelles found in plant cells that conduct photosynthesis. The subchloroplast locations of proteins are correlated with their functions. With the availability of a great number of protein data, it i...Chloroplasts are organelles found in plant cells that conduct photosynthesis. The subchloroplast locations of proteins are correlated with their functions. With the availability of a great number of protein data, it is highly desired to develop a com- putational method to predict the subchloroplast locations of chloroplast proteins. In this study, we proposed a novel method to predict subchloroplast locations of proteins using tripeptide compositions. It first used the binomial distribution to optimize the feature sets. Then the support vector machine was selected to perform the prediction of subchloroplast locations of proteins. The proposed method was tested on a reliable and rigorous dataset including 259 chloroplast proteins with sequence identity ≤ 25%. In the jack-knife cross-validation, 92.21% envelope proteins, 93.20% thylakoid mem- brane, 52.63% thylakoid lumen and 85.00% stroma can be correctly identified. The overall accuracy achieves 88.03% which is higher than that of other models. Based on this method, a predictor called ChloPred has been built and can be freely available from http://cobi.uestc.edu.cn/people/hlin/tools/ChloPred/. The predictor will provide important information for theoretical and experimental research of chloroplast proteins.展开更多
基金Supported by the General Project of Qujing Normal University(2010MS007)~~
文摘[Objective] This study aimed to perform the bioinformatics analysis of Zinc transporter (ZnT) from Baoding Alfalfa. [Method] Based on the amino acid sequence, the physical and chemical properties, hydrophilicity/hydrophobicity, secondary structure of ZnT from Baoding alfalfa were predicted by a series of bioinformatics software. And the transmembrane domains were predicted by using different online tools. [Result] ZnT is a hydrophobic protein containing 408 amino acids with the theoretical pl of 5.94, and it has 7 potential transmembrane hydrophobic regions. In the sec- ondary structure, co-helix (Hh) accounted for 48.04%, extended strand (Ee) for 9.56%, random coil (Cc) for 42.40%, which was accored with the characteristic of transmembrane protein. [Conclusion] mZnT is a member of CDF family, responsible for transporting Zn^2+ out of the cell membrane to reduce the concentration and toxicity of Zn^2+.
文摘CME2007第二届国际复合医学工程学术大会暨展览会IEEE/ICME International Conference on Complex Medical Engineering-CME2007会议时间:2007年5月23日—27日(其中:报到/布展:2007年5月21-22日会议/展出:2007年5月23-25日旅游:2007年5月26-27日)会议地点:北京京丰宾馆(丰台区丰台路75号)
基金Supported by the National Natural Science Foundation of China(Nos.30972263,30771644)the Natural Science Foundation of HunanProvince(No.09jj6037)
文摘The myosin heavy chain(MyHC)is one of the major structural and contracting proteins of muscle.We have isolated the cDNA clone encoding MyHC of the grass carp,Ctenopharyngodon idella. The sequence comprises 5 934 bp,including a 5 814 bp open reading frame encoding an amino acid sequence of 1 937 residues.The deduced amino acid sequence showed 69%homology to rabbit fast skeletal MyHC and 73%–76%homology to the MyHCs from the mandarin fish,walleye pollack,white croaker,chum salmon,and carp.The putative sequences of subfragment-1 and the light meromyosin region showed 61.4%–80%homology to the corresponding regions of other fish MyHCs.The tissue-specific and developmental stage-specific expressions of the MyHC gene were analyzed by quantitative real-time PCR.The MyHC gene showed the highest expression in the muscles compared with the kidney,spleen and intestine.Developmentally,there was a gradual increase in MyHC mRNA expression from the neural formation stage to the tail bud stage.The highest expression was detected in hatching larva.Our work on the MyHC gene from the grass carp has provided useful information for fish molecular biology and fish genomics.
文摘Chloroplasts are organelles found in plant cells that conduct photosynthesis. The subchloroplast locations of proteins are correlated with their functions. With the availability of a great number of protein data, it is highly desired to develop a com- putational method to predict the subchloroplast locations of chloroplast proteins. In this study, we proposed a novel method to predict subchloroplast locations of proteins using tripeptide compositions. It first used the binomial distribution to optimize the feature sets. Then the support vector machine was selected to perform the prediction of subchloroplast locations of proteins. The proposed method was tested on a reliable and rigorous dataset including 259 chloroplast proteins with sequence identity ≤ 25%. In the jack-knife cross-validation, 92.21% envelope proteins, 93.20% thylakoid mem- brane, 52.63% thylakoid lumen and 85.00% stroma can be correctly identified. The overall accuracy achieves 88.03% which is higher than that of other models. Based on this method, a predictor called ChloPred has been built and can be freely available from http://cobi.uestc.edu.cn/people/hlin/tools/ChloPred/. The predictor will provide important information for theoretical and experimental research of chloroplast proteins.