As the only alkaline gas in the atmosphere,ammonia could react with sulfur dioxide and nitrogen oxides to form the secondary particles.A large amount of NH3 in the atmosphere accelerates the rate of formation of fine ...As the only alkaline gas in the atmosphere,ammonia could react with sulfur dioxide and nitrogen oxides to form the secondary particles.A large amount of NH3 in the atmosphere accelerates the rate of formation of fine particles;it therefore plays an important role in haze pollution.Livestock and poultry farming and nitrogen fertilizer application are the two main NH3 emission sources.Jiangsu Province contributes the largest proportion of NH3 emissions from agriculture in key areas of national air pollution control in China.The aims of this study are to investigate NH3 emissions from agriculture in Jiangsu Province using the emissions factor method,and analyze and summarize the characteristics and trends of NH3 emissions from 2000 to 2017.Results show that the NH3 emissions from agriculture in Jiangsu Province from 2000 to 2017 were mainly contributed by livestock and poultry farming(78.08%)and nitrogen fertilizer application(21.92%).Furthermore,a general fluctuation trend of an initial decrease and then an increase,of NH3 emissions from agriculture,could be found from 2000 to 2012,with minimum NH3 emissions in 2007(708.76 kt yr−1)and maximum emissions in 2012(837.64 kt yr−1);and then a decreasing trend was apparent from 2012(837.64 kt yr−1)to 2017(690.64 kt yr−1).A detailed estimation of the interannual trends and potential measures are also proposed.This study provides a solid theoretical foundation for the development of NH3 emissions control in Jiangsu Province.展开更多
A comprehensive agricultural inventory of ammonia emissions for 2017 in Hefei was established on the basis of the specific emission factors and county-level activity data.The emissions over a 1 km×1 km grid and t...A comprehensive agricultural inventory of ammonia emissions for 2017 in Hefei was established on the basis of the specific emission factors and county-level activity data.The emissions over a 1 km×1 km grid and the associated monthly variations were distributed on the basis of land-use type and meteorological conditions,respectively.The total ammonia emissions were 27,242.7 t in 2017 in Hefei,to which livestock was the top contributor,accounting for 54.5%.Two major contributors to livestock waste were broilers and laying hens,which contributed 34.5%and 22.2%of the total emissions,respectively.Changfeng,Feixi,and Feidong counties,with more developed agriculture than other counties,accounted for a large proportion of the total ammonia emissions—as much as 28.5%,24.5%,and 21.0%,respectively.The average emissions density of the whole region was 2.4 t km−2,and the higher values were mostly in areas with denser populations.Seasonally,peak ammonia emissions occurred in summer.展开更多
基金This study was funded by the National Natural Science Foundation of China[grant numbers 41771291 and 21806080]the Jiangsu Specially-Appointed Professor Program,the Six Talent Peaks Project in Jiangsu Province[grant number NY-083]the Startup Foundation for Introducing Talent of NUIST,and the Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province.
文摘As the only alkaline gas in the atmosphere,ammonia could react with sulfur dioxide and nitrogen oxides to form the secondary particles.A large amount of NH3 in the atmosphere accelerates the rate of formation of fine particles;it therefore plays an important role in haze pollution.Livestock and poultry farming and nitrogen fertilizer application are the two main NH3 emission sources.Jiangsu Province contributes the largest proportion of NH3 emissions from agriculture in key areas of national air pollution control in China.The aims of this study are to investigate NH3 emissions from agriculture in Jiangsu Province using the emissions factor method,and analyze and summarize the characteristics and trends of NH3 emissions from 2000 to 2017.Results show that the NH3 emissions from agriculture in Jiangsu Province from 2000 to 2017 were mainly contributed by livestock and poultry farming(78.08%)and nitrogen fertilizer application(21.92%).Furthermore,a general fluctuation trend of an initial decrease and then an increase,of NH3 emissions from agriculture,could be found from 2000 to 2012,with minimum NH3 emissions in 2007(708.76 kt yr−1)and maximum emissions in 2012(837.64 kt yr−1);and then a decreasing trend was apparent from 2012(837.64 kt yr−1)to 2017(690.64 kt yr−1).A detailed estimation of the interannual trends and potential measures are also proposed.This study provides a solid theoretical foundation for the development of NH3 emissions control in Jiangsu Province.
基金This work was supported by the National Natural Science Foundation of China[grant number 41775154]the Six Talent Peaks Project in Jiangsu Province[grant number JNHB-057]the Postgraduate Practical Innovation Program of Jiangsu Province of China[grant number SJCX19_0301].
文摘A comprehensive agricultural inventory of ammonia emissions for 2017 in Hefei was established on the basis of the specific emission factors and county-level activity data.The emissions over a 1 km×1 km grid and the associated monthly variations were distributed on the basis of land-use type and meteorological conditions,respectively.The total ammonia emissions were 27,242.7 t in 2017 in Hefei,to which livestock was the top contributor,accounting for 54.5%.Two major contributors to livestock waste were broilers and laying hens,which contributed 34.5%and 22.2%of the total emissions,respectively.Changfeng,Feixi,and Feidong counties,with more developed agriculture than other counties,accounted for a large proportion of the total ammonia emissions—as much as 28.5%,24.5%,and 21.0%,respectively.The average emissions density of the whole region was 2.4 t km−2,and the higher values were mostly in areas with denser populations.Seasonally,peak ammonia emissions occurred in summer.