Wastewater reclamation in the petroleum industries in Northern China is important because of the shortage of water resource. Conventional treatment technology used:in treating petroleum-based wastewater, namely the 3...Wastewater reclamation in the petroleum industries in Northern China is important because of the shortage of water resource. Conventional treatment technology used:in treating petroleum-based wastewater, namely the 3-phase biological process, typically removes COD, BODI grease, volatile hydrobenzenes, cyanides, sulfides and suspended solids. However, the process is often ineffective in ammonia-nitrogen removal, and thus the treated effluent quantity can' t meet the required standards for reuse. This paper investigated a novel ozone immobilized biological activated carbon(O3-IBAC) process for ammonia nitrogen removal from petroleum-based wastewater. Operated at a HRT ( Hydraulic Retention Time) of 15 minutes in IBACI and 27 minutes in IBAC2, the O3-IBAC process achieved ammonia nitrogen removal efficiency of 91%. In addition, the removal efficiencies 6f COD, volatile hydrobenzenes, suspended solids, turbidity and petroleum-based micropollutants were all above 90%. Competition between the autotrophs and heterotrophs was observed, which was indicated by an increase of ammonia nitrogen removal with a decrease of COD removal, and vise versa. Nitrite accumulation in IBACI followed by erobic shortcut denitrification in IBAC2 led to 28% of the Total Nitrogen removal efficiency. Pollutant reduction in' the IBAC process was achieved by a rapid physical adsorption and biodegradation on the activated carbon, which effectively retained the pollutants in the system despite the short hydraulic retention time.展开更多
Conventional water purified processes have low removal efficiencies for low concentrations of ammonia nitrogen, nitrite nitrogen and micro-pollutants. The efficiency and mechanisms of a novel immobilized biological ac...Conventional water purified processes have low removal efficiencies for low concentrations of ammonia nitrogen, nitrite nitrogen and micro-pollutants. The efficiency and mechanisms of a novel immobilized biological activated carbon (IBAC) process to remove those pollutants from treated potable water was investigated. Operated at a hydraulic retention time of 24 minutes, the IBAC process achieved ammonia nitrogen, nitrite nitrogen and organic micro-pollutants (measured as COD equivalent) removal efficiencies of 95%, 96% and 37%, respectively. A GC/MS analysis of the organic micro-pollutants revealed that the initial 24 organic compounds in the in-coming water were reduced to 7 after the IBAC treatment. The organic micro-pollutant removal efficiency decreased with decreasing in-coming concentrations. Pollutant reduction in the IBAC process was achieved by a rapid physical adsorption on the activated carbon, which effectively retained the pollutants in the system despite the short hydraulic retention time, followed by a slower biological enzymatic degradation of the pollutants.展开更多
文摘Wastewater reclamation in the petroleum industries in Northern China is important because of the shortage of water resource. Conventional treatment technology used:in treating petroleum-based wastewater, namely the 3-phase biological process, typically removes COD, BODI grease, volatile hydrobenzenes, cyanides, sulfides and suspended solids. However, the process is often ineffective in ammonia-nitrogen removal, and thus the treated effluent quantity can' t meet the required standards for reuse. This paper investigated a novel ozone immobilized biological activated carbon(O3-IBAC) process for ammonia nitrogen removal from petroleum-based wastewater. Operated at a HRT ( Hydraulic Retention Time) of 15 minutes in IBACI and 27 minutes in IBAC2, the O3-IBAC process achieved ammonia nitrogen removal efficiency of 91%. In addition, the removal efficiencies 6f COD, volatile hydrobenzenes, suspended solids, turbidity and petroleum-based micropollutants were all above 90%. Competition between the autotrophs and heterotrophs was observed, which was indicated by an increase of ammonia nitrogen removal with a decrease of COD removal, and vise versa. Nitrite accumulation in IBACI followed by erobic shortcut denitrification in IBAC2 led to 28% of the Total Nitrogen removal efficiency. Pollutant reduction in' the IBAC process was achieved by a rapid physical adsorption and biodegradation on the activated carbon, which effectively retained the pollutants in the system despite the short hydraulic retention time.
文摘Conventional water purified processes have low removal efficiencies for low concentrations of ammonia nitrogen, nitrite nitrogen and micro-pollutants. The efficiency and mechanisms of a novel immobilized biological activated carbon (IBAC) process to remove those pollutants from treated potable water was investigated. Operated at a hydraulic retention time of 24 minutes, the IBAC process achieved ammonia nitrogen, nitrite nitrogen and organic micro-pollutants (measured as COD equivalent) removal efficiencies of 95%, 96% and 37%, respectively. A GC/MS analysis of the organic micro-pollutants revealed that the initial 24 organic compounds in the in-coming water were reduced to 7 after the IBAC treatment. The organic micro-pollutant removal efficiency decreased with decreasing in-coming concentrations. Pollutant reduction in the IBAC process was achieved by a rapid physical adsorption on the activated carbon, which effectively retained the pollutants in the system despite the short hydraulic retention time, followed by a slower biological enzymatic degradation of the pollutants.