采用Gabriel合成法,由ω-氯甲基长叶烯(3)经中间体N-取代邻苯二甲酰亚胺衍生物(4)合成了目标化合物ω-氨甲基长叶烯(5)。化合物4和5的结构经高分辨质谱(HRMS)、傅里叶红外光谱(FT-IR)、核磁共振氢谱(1 H NMR)、核磁共振碳谱(13 C NMR)...采用Gabriel合成法,由ω-氯甲基长叶烯(3)经中间体N-取代邻苯二甲酰亚胺衍生物(4)合成了目标化合物ω-氨甲基长叶烯(5)。化合物4和5的结构经高分辨质谱(HRMS)、傅里叶红外光谱(FT-IR)、核磁共振氢谱(1 H NMR)、核磁共振碳谱(13 C NMR)和单晶X射线衍射(SC-XRD)进行表征确证,化合物5的绝对构型由合成的化合物4的晶体结构推断。在化合物4的水解反应中,采用添加氢氧化钠在无溶剂下加热回流肼解的方法,能提高化合物5的产率,简化分离提纯工艺。单因素试验结果表明:较佳的肼解反应工艺条件为n(水合肼)∶n(化合物4)=23∶1、10%氢氧化钠溶液5 g、反应温度120℃、反应时间6 h,此条件下化合物5的产率为94.1%,纯度为99.98%。体外抗菌活性测定结果表明:化合物5对4种细菌(金黄色葡萄球菌、枯草芽孢杆菌、大肠杆菌和肺炎克雷伯菌)和3种真菌(白色念珠菌、热带念珠菌和黑曲霉)的生长有明显的抑制作用,其最低抑制质量浓度(MIC)分别为1.95、1.95、7.81、3.91、3.91、1.95和15.63 mg/L。其中化合物5对白色念珠菌和热带念珠菌的抑制活性强于阳性对照酮康唑。展开更多
文摘采用Gabriel合成法,由ω-氯甲基长叶烯(3)经中间体N-取代邻苯二甲酰亚胺衍生物(4)合成了目标化合物ω-氨甲基长叶烯(5)。化合物4和5的结构经高分辨质谱(HRMS)、傅里叶红外光谱(FT-IR)、核磁共振氢谱(1 H NMR)、核磁共振碳谱(13 C NMR)和单晶X射线衍射(SC-XRD)进行表征确证,化合物5的绝对构型由合成的化合物4的晶体结构推断。在化合物4的水解反应中,采用添加氢氧化钠在无溶剂下加热回流肼解的方法,能提高化合物5的产率,简化分离提纯工艺。单因素试验结果表明:较佳的肼解反应工艺条件为n(水合肼)∶n(化合物4)=23∶1、10%氢氧化钠溶液5 g、反应温度120℃、反应时间6 h,此条件下化合物5的产率为94.1%,纯度为99.98%。体外抗菌活性测定结果表明:化合物5对4种细菌(金黄色葡萄球菌、枯草芽孢杆菌、大肠杆菌和肺炎克雷伯菌)和3种真菌(白色念珠菌、热带念珠菌和黑曲霉)的生长有明显的抑制作用,其最低抑制质量浓度(MIC)分别为1.95、1.95、7.81、3.91、3.91、1.95和15.63 mg/L。其中化合物5对白色念珠菌和热带念珠菌的抑制活性强于阳性对照酮康唑。