The formation of runaway electron pre-ionized diffuse discharges at the pressures 0.05-0.7 MPa of in air, argon, nitrogen, and SF6 in an inhomogeneous electric field was investigated. Dynamics of intensity of the disc...The formation of runaway electron pre-ionized diffuse discharges at the pressures 0.05-0.7 MPa of in air, argon, nitrogen, and SF6 in an inhomogeneous electric field was investigated. Dynamics of intensity of the discharge plasma radiation from the different discharge gap regions in the gas pressure range (0.05-0.7 MPa) was established. It was shown that, the breakdown is occurred owing to the ionization wave, which starts from the electrode with small radius of curvature at both polarity of high voltage pulses. It is seen that formation of bright spots on the fiat electrode at the negative polarity of the electrode with small radius of curvature are observed during the changing of the discharge current polarity. It was shown that, at positive polarity of electrode with a small radius of curvature, the bright spots on the flat electrode arise due to the participation of the dynamic displacement current in the gap conductance.展开更多
基金Acknowledgments The work was supported by the grant from the Russian Science Foundation, project No. 14-29-00052.
文摘The formation of runaway electron pre-ionized diffuse discharges at the pressures 0.05-0.7 MPa of in air, argon, nitrogen, and SF6 in an inhomogeneous electric field was investigated. Dynamics of intensity of the discharge plasma radiation from the different discharge gap regions in the gas pressure range (0.05-0.7 MPa) was established. It was shown that, the breakdown is occurred owing to the ionization wave, which starts from the electrode with small radius of curvature at both polarity of high voltage pulses. It is seen that formation of bright spots on the fiat electrode at the negative polarity of the electrode with small radius of curvature are observed during the changing of the discharge current polarity. It was shown that, at positive polarity of electrode with a small radius of curvature, the bright spots on the flat electrode arise due to the participation of the dynamic displacement current in the gap conductance.