In this work, we successfully synthesized bicrystalline anatase/TiO2(B) nanofibre and used it as active substrate for surface-enhanced Raman scattering (SERS) applications. The bicrystalline structured TiO2 substr...In this work, we successfully synthesized bicrystalline anatase/TiO2(B) nanofibre and used it as active substrate for surface-enhanced Raman scattering (SERS) applications. The bicrystalline structured TiO2 substrates provide additional charge transfer across the anatase-TiO2(B) interface and thus enhanced activity compared to the pure single crystalline phase. With an effort to further increase the sensitivity of SERS, nitrogen element was doped into bicrystalline anatase/TiO2(B) nanofibres (N-TiO2) and higher SERS enhancement was achieved. The nitrogen content was controlled by tuning the calcination temperature of titanate precursor at 500, 600 and 700℃, respectively. The sample calcined at 600℃ (NT600) acquires the highest percentage of nitrogen element due to its open pore structure that facilitates the diffusion of nitrogen during calcination. Raman intensity depends on the amount of nitrogen doping, thus NT600 exhibited the best SERS activity. The doped nitrogen in TiO2 facilitates the charge transfer between TiO2 and probing molecules and thus suppresses the electron-hole recombination. This work provides a new perspective on the design of efficient TiO2 SERS active substrate and is expected to be valuable for adsorbate detection on semiconductor surface.展开更多
In order to enhance the antibacterial ability of titanium components,an antibacterial coating was fabricated on Ti surface by micro-arc oxidation(MAO)and further nitrogen plasma immersion ion implantation(N-PIII).The ...In order to enhance the antibacterial ability of titanium components,an antibacterial coating was fabricated on Ti surface by micro-arc oxidation(MAO)and further nitrogen plasma immersion ion implantation(N-PIII).The XPS spectra demonstrated that nitrogen was incorporated into TiO2 coatings by N-PIII and the nitrogen content on the surface of TiO2 coatings increased as the N-PIII time increased.Nitrogen-incorporated samples exhibited remarkably increased absorbance in the visible region and the light absorption edge of nitrogen-incorporated samples showed a redshift compared to MAO samples.Escherichia coli and Staphylococcus aureus were seeded on the samples to assess their antibacterial ability.The bacterial experiment demonstrated that nitrogen-incorporated TiO2 could effectively reduce the bacterial viability in visible light.Thus,the antibacterial TiO2 coatings fabricated by MAO and further N-PIII might have large potential in the medical and marine fields.展开更多
This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that th...This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of im-purity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of im-purity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing.展开更多
Photocatalytic activity of TiO2 nanopowders of anatase modification with various particle sizes and specific surface areas has been studied in the process of photocatalytic decolorization of aqueous solutions of methy...Photocatalytic activity of TiO2 nanopowders of anatase modification with various particle sizes and specific surface areas has been studied in the process of photocatalytic decolorization of aqueous solutions of methylene blue and direct blue 2C azodyes. By means of scanning electron microscopy and low-temperature N2 adsorption method, it was found that TiO2 nanopowders have the particles size of 5-120 nm with the specific surface area of 15-120 m2·g^-1. The used TiO2 samples are characterized by mesoporous structures with average pore size of 4.3-14.9 nm. The photocatalytic activity of TiO2 was evaluated via decolorization of azodyes solutions. It was shown that the efficiency of decolorization symbatically changes with the dye adsorption value on TiO2 surface and the degree of decolorization rises when the surface area of TiO2 nanopowders increases. It was found that TiO2 photocatalytic activity essentially depends on adsorption interactions between the dye molecules and catalytic active centers on TiO2 surface, and these interactions, in turn, are greatly affected by pH of the solution.展开更多
We developed a novel approach for the preparation of N-doped TiO2 photocatalysts by calcining ammonium titanium oxalate at different temperatures. The structures of N-TiO2 were characterized by powder X-ray diffractio...We developed a novel approach for the preparation of N-doped TiO2 photocatalysts by calcining ammonium titanium oxalate at different temperatures. The structures of N-TiO2 were characterized by powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, diffuse reflectance UV-Vis spectroscopy, and scanning electron microscope. The N-doped TiO2 photocatalysts calcined below 700 ℃ are the pure anatase phase but that calcined at 700 ℃ is a mixture of anatase and rutile phases. The doped N locates at the interstitial site of TiO2 which leads to the narrowing of bad gap of pure anatase N-TiO2. Among all photocatalysts, N-TiO2 photocatalysts calcined at 600 and 400 ℃ exhibit the best performance in the photodegradation of methyl orange under the UV light and all-wavelength light illuminations, respectively; however, because of the perfect crystallinity and the existence of anatase-rutile phase junctions, N-TiO2 photocatalyst calcined at 700 ℃ exhibits the highest specific photodegradation rate, i.e., the highest quantum yield, under both the UV light and all-wavelength light illuminations.展开更多
Different titanium oxide powders (ATiO2, BTiO2) were pretreated in ammonia (NH3) gas at high temperatures. After the pretreatment, the color of the titanium oxide powders changed from white to yellow or gray depen...Different titanium oxide powders (ATiO2, BTiO2) were pretreated in ammonia (NH3) gas at high temperatures. After the pretreatment, the color of the titanium oxide powders changed from white to yellow or gray depending on the pretreatment temperatures. Morphologies and structures of the treated titanium oxide powders were characterized by physical chemical methods. XRD measurements showed that the crystalline structures were mainly mixture of anatase and rutile for the ATiO2 but only anatase for the BTiO2, Stronger absorption of visible light was observed for both types of samples using UV-Vis diffuse reflectance spectra. X-ray photoelectron spectroscopy demonstrated that doped nitrogen existed on the surface TiO2 after ammonia gas pretreatment. The photocatalytic activities of the treated titanium oxide samples were evaluated via the photodegradation of methyl orange and phenol in aqueous suspensions. No obvious improvement in photocatalytic activity was achieved by ammonia pretreatment although it could enhance the absorption of light. Effects of treatment temperatures on photoactivities were complete different for ATiO2 and BTiO2 (i.e. higher treated temperatures yielded higher activities for BTiO2 but lower for ATiO2). All samples yielded lower activity levels after ammonia pretreatment without regard to pretreatment temperature or the reaction light resource.展开更多
基金Supported by Chinese MOST 973 project(2013CB733501)the National Natural Science Foundation of China1(21136004,21476106,21606131)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Fundamental Research Funds for the Central Universities(30916011351)at Nanjing University of Science&Technology
文摘In this work, we successfully synthesized bicrystalline anatase/TiO2(B) nanofibre and used it as active substrate for surface-enhanced Raman scattering (SERS) applications. The bicrystalline structured TiO2 substrates provide additional charge transfer across the anatase-TiO2(B) interface and thus enhanced activity compared to the pure single crystalline phase. With an effort to further increase the sensitivity of SERS, nitrogen element was doped into bicrystalline anatase/TiO2(B) nanofibres (N-TiO2) and higher SERS enhancement was achieved. The nitrogen content was controlled by tuning the calcination temperature of titanate precursor at 500, 600 and 700℃, respectively. The sample calcined at 600℃ (NT600) acquires the highest percentage of nitrogen element due to its open pore structure that facilitates the diffusion of nitrogen during calcination. Raman intensity depends on the amount of nitrogen doping, thus NT600 exhibited the best SERS activity. The doped nitrogen in TiO2 facilitates the charge transfer between TiO2 and probing molecules and thus suppresses the electron-hole recombination. This work provides a new perspective on the design of efficient TiO2 SERS active substrate and is expected to be valuable for adsorbate detection on semiconductor surface.
基金Projects(51831011,31670980)supported by the National Natural Science Foundation of ChinaProject(51525207)supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProjects(18YF1426900,18410760600)supported by the Science and Technology Commission of Shanghai Municipality,China.
文摘In order to enhance the antibacterial ability of titanium components,an antibacterial coating was fabricated on Ti surface by micro-arc oxidation(MAO)and further nitrogen plasma immersion ion implantation(N-PIII).The XPS spectra demonstrated that nitrogen was incorporated into TiO2 coatings by N-PIII and the nitrogen content on the surface of TiO2 coatings increased as the N-PIII time increased.Nitrogen-incorporated samples exhibited remarkably increased absorbance in the visible region and the light absorption edge of nitrogen-incorporated samples showed a redshift compared to MAO samples.Escherichia coli and Staphylococcus aureus were seeded on the samples to assess their antibacterial ability.The bacterial experiment demonstrated that nitrogen-incorporated TiO2 could effectively reduce the bacterial viability in visible light.Thus,the antibacterial TiO2 coatings fabricated by MAO and further N-PIII might have large potential in the medical and marine fields.
基金Project (No. 2004AA32G040) supported by the Hi-Tech Researchand Development Program (863) of China
文摘This study on the band structures and charge densities of nitrogen (N)-, carbon (C)- and boron (B)-doped titanium dioxide (TiO2) by first-principles simulation with the CASTEP code (Segall et al., 2002) showed that the three 2p bands of im-purity atom are located above the valence-band maximum and below the Ti 3d bands, and that along with the decreasing of im-purity atomic number, the fluctuations become more intensive. We cannot observe obvious band-gap narrowing in our result. Therefore, the cause of absorption in visible light might be the isolated impurity atom 2p states in band-gap rather than the band-gap narrowing.
文摘Photocatalytic activity of TiO2 nanopowders of anatase modification with various particle sizes and specific surface areas has been studied in the process of photocatalytic decolorization of aqueous solutions of methylene blue and direct blue 2C azodyes. By means of scanning electron microscopy and low-temperature N2 adsorption method, it was found that TiO2 nanopowders have the particles size of 5-120 nm with the specific surface area of 15-120 m2·g^-1. The used TiO2 samples are characterized by mesoporous structures with average pore size of 4.3-14.9 nm. The photocatalytic activity of TiO2 was evaluated via decolorization of azodyes solutions. It was shown that the efficiency of decolorization symbatically changes with the dye adsorption value on TiO2 surface and the degree of decolorization rises when the surface area of TiO2 nanopowders increases. It was found that TiO2 photocatalytic activity essentially depends on adsorption interactions between the dye molecules and catalytic active centers on TiO2 surface, and these interactions, in turn, are greatly affected by pH of the solution.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20773113), the Solar Energy Project of Chinese Academy of Sciences, the Ministry of Education program for PCSIRT (No.IRT0756), and the Max Planck Gesellschaft of Chinese Academy of Sciences partner group.
文摘We developed a novel approach for the preparation of N-doped TiO2 photocatalysts by calcining ammonium titanium oxalate at different temperatures. The structures of N-TiO2 were characterized by powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, diffuse reflectance UV-Vis spectroscopy, and scanning electron microscope. The N-doped TiO2 photocatalysts calcined below 700 ℃ are the pure anatase phase but that calcined at 700 ℃ is a mixture of anatase and rutile phases. The doped N locates at the interstitial site of TiO2 which leads to the narrowing of bad gap of pure anatase N-TiO2. Among all photocatalysts, N-TiO2 photocatalysts calcined at 600 and 400 ℃ exhibit the best performance in the photodegradation of methyl orange under the UV light and all-wavelength light illuminations, respectively; however, because of the perfect crystallinity and the existence of anatase-rutile phase junctions, N-TiO2 photocatalyst calcined at 700 ℃ exhibits the highest specific photodegradation rate, i.e., the highest quantum yield, under both the UV light and all-wavelength light illuminations.
基金V. ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (No.50478065) and the Excellent Youth Foundation of Anhui Province (No.04044077) to X. H. Huang, the Science and Technology Foundation of Ministry of Construction (No.05- k2-25), the Important Foundation of Anhui Science and Technology Department (No.05022126), and the Natural Science Foundation of Anhui Education Department (No.2006KJ139B) to Y. C. Tang.
文摘Different titanium oxide powders (ATiO2, BTiO2) were pretreated in ammonia (NH3) gas at high temperatures. After the pretreatment, the color of the titanium oxide powders changed from white to yellow or gray depending on the pretreatment temperatures. Morphologies and structures of the treated titanium oxide powders were characterized by physical chemical methods. XRD measurements showed that the crystalline structures were mainly mixture of anatase and rutile for the ATiO2 but only anatase for the BTiO2, Stronger absorption of visible light was observed for both types of samples using UV-Vis diffuse reflectance spectra. X-ray photoelectron spectroscopy demonstrated that doped nitrogen existed on the surface TiO2 after ammonia gas pretreatment. The photocatalytic activities of the treated titanium oxide samples were evaluated via the photodegradation of methyl orange and phenol in aqueous suspensions. No obvious improvement in photocatalytic activity was achieved by ammonia pretreatment although it could enhance the absorption of light. Effects of treatment temperatures on photoactivities were complete different for ATiO2 and BTiO2 (i.e. higher treated temperatures yielded higher activities for BTiO2 but lower for ATiO2). All samples yielded lower activity levels after ammonia pretreatment without regard to pretreatment temperature or the reaction light resource.