[Objective] The aim was to compare the content changes between the non-structural carbohydrates(NSC)and the total nitrogen in various growing seasons,and to explore the response relationship between altitude and the...[Objective] The aim was to compare the content changes between the non-structural carbohydrates(NSC)and the total nitrogen in various growing seasons,and to explore the response relationship between altitude and the contents.[Method] Taking Quercus aquifolioides scrub which widely distributed in Zheduoshan in the west of Sichuan as the experimental objects,the changes between NSC and the toal nitrogen in various growing seasons at different altitude were studied.[Result] The results showed that the content of NSC in Quercus aquifolioides underground increased with the lift of elevation in the dormancy,but decreased in the early germination,growing period and growth stage.The content of NSC in the ground tissue changed non-linearly with increasing elevation.In addition,the total nitrogen of Quercus aquifolioides organizations was decreasing with increasing elevation in the dormant period,which did not change significantly in the other periods.This result implied that the content of NSC in Quercus aquifolioides underground was more sensitive to temperature.[Conclusion] The experiment laid basis for the exploration of the physical and ecological mechanism of underground plants adaptability to highland environment,their response to global climate changes and adjustment to high altitude ecological system.展开更多
The geometries of azobenzene compounds are optimized with B3LYP/6-311G* method, and analyzed with nature bond orbital, then their visible absorption maxima are calculated with TD-DFT method and ZINDO/S method respecti...The geometries of azobenzene compounds are optimized with B3LYP/6-311G* method, and analyzed with nature bond orbital, then their visible absorption maxima are calculated with TD-DFT method and ZINDO/S method respectively. The results agree well with the observed values. It was found that for the calculation of visible absorption using ZINDO/S method could rapidly yield better results by adjusting OWFπ-π (the relationship between π-π overlap weighting factor) value than by the TD-DFT method. The method of regression showing the linear relationship between OWFπ-π and BLN-N (nitrogen-nitrogen bond lengths) as OWFπ-π=?8.1537+6.5638BLN-N, can be explained in terms of quantum theory, and also be used for prediction of visible absorption maxima of other azobenzne dyes in the same series. This study on molecules’ orbital geometry indicates that their visible ab- sorption maxima correspond to the electron transition from HOMO (the highest occupied molecular orbital) to LUMO (the lowest unoccupied molecular orbital).展开更多
A stable Pd(II) compound Pd(AETYF)Cl2CH2Cl2 (AETYF = 4?5?diaza-9? (4,5-bis(ethylthio)-1,3-dithiole-2-ylidene)-fluorene) has been synthesized and its crystal structure was determined by X-ray crystallography. The cryst...A stable Pd(II) compound Pd(AETYF)Cl2CH2Cl2 (AETYF = 4?5?diaza-9? (4,5-bis(ethylthio)-1,3-dithiole-2-ylidene)-fluorene) has been synthesized and its crystal structure was determined by X-ray crystallography. The crystal is of monoclinic, space group P21/c with a = 15.249(6), b = 8.619(3), c = 19.078(7) ? b = 106.932(8), C19H18Cl4N2PdS4, Mr = 650.79, V = 2398.6(16) 3, Z = 4, Dc = 1.802 g/cm3, F(000) = 1296, m = 1.579 mm-1, Npar = 268, the final R = 0.0538 and wR = 0.1282 for 5068 observed reflections with I > 2s(I). The crystal structure determi- nation shows that the atoms of the molecule, except two ethyl-groups, are conjugated in a quasi- plane and these molecules are further stacked or contacted via plane to plane or edge to edge p-p interactions, forming parallel molecular chains along the b axis.展开更多
A general method is developed to prepare durable hybrid nanocatalysts by nanostructuring the surface of gold wires via simple alloying and dealloying. The resulting nanoporous gold/Au (NPG/Au) wire catalysts possess...A general method is developed to prepare durable hybrid nanocatalysts by nanostructuring the surface of gold wires via simple alloying and dealloying. The resulting nanoporous gold/Au (NPG/Au) wire catalysts possess nanoporous skins with their thicknesses on robust metal wires specified in a highly controllable manner. As a demonstration, the as-obtained NPG/Au was shown to be a highly active, chemo-selective, and recyclable catalyst for the reduction of nitro com- pounds and azides using organosilanes as reducing agents.展开更多
As a two-dimensional(2D) material, polymeric carbon nitride(g-C_3N_4) nanosheet holds great potentials in environmental purification and solar energy conversion. In this review, we summarized latest progress in the op...As a two-dimensional(2D) material, polymeric carbon nitride(g-C_3N_4) nanosheet holds great potentials in environmental purification and solar energy conversion. In this review, we summarized latest progress in the optimization of photocatalytic performance in 2D g-C_3N_4. Some of the latest structural engineering methods were summed up, where the relevant influences on the behaviors of photoinduced species were emphasized. Furthermore, the construction strategies for band structure modulation and charge separation promotion were then discussed in detail. A brief discussion on the opportunity and challenge of 2D g-C_3N_4-based photocatalysis are presented as the conclusion of this review.展开更多
Aims Subalpine coniferous species are distributed over a wide range of elevations in which they must contend with stressful conditions,such as high elevations and extended periods of darkness.Two evergreen coniferous ...Aims Subalpine coniferous species are distributed over a wide range of elevations in which they must contend with stressful conditions,such as high elevations and extended periods of darkness.Two evergreen coniferous species,Abies veitchii and Abies mariesii,dominate at low and high elevations,respectively,in the subalpine zone,central Japan.The aim of this study is to examine the effects of leaf age,elevation and light conditions on photosynthetic rates through changes in morphological and physiological leaf traits in the two species.Methods We here examined effects of leaf age,elevation and light conditions on photosynthesis,and leaf traits in A.veitchii and A.mariesii.Saplings of the two conifers were sampled in the understory and canopy gaps at their lower(1600 m)and upper(2300 m)distribution limits.Important Findings The two species showed similar responses to leaf age and different responses to elevation and light conditions in photosynthesis and leaf traits.The maximum photosynthetic rate of A.veitchii is correlated negatively with leaf mass per area(LMA)and non-structural carbohydrate(NSC)concentration.LMA increased at high elevations in the two species,whereas NSC concentrations increased only in A.veitchii.Therefore,the maximum photosynthetic rate of A.veitchii decreased at high elevations.Furthermore,maximum photosynthetic rates correlate positively with nitrogen concentration in both species.In the understory,leaf nitrogen concentrations decreased and increased in A.veitchii and A.mariesii,respectively.LMA decreased and the chlorophyll-to-nitrogen ratio increased in understory conditions only for A.mariesii,suggesting it has a higher light-capture efficiency in dark conditions than does A.veitchii.This study concluded that A.mariesii has more shade-tolerant photosynthetic and leaf traits and its photosynthetic rate is less affected by elevation compared with A.veitchii,allowing A.mariesii to survive in the understory and to dominate at high elevations.展开更多
基金Supported by National Natural Science Fund(30872017)China Science Academy Knowledge Innovation Engineering Project Important Direction Program(KZCX2-YW-331-3,KSCX2-YW-N-066)Central University Basic Science Research Operation Special Fund(XDJK2009C110)~~
文摘[Objective] The aim was to compare the content changes between the non-structural carbohydrates(NSC)and the total nitrogen in various growing seasons,and to explore the response relationship between altitude and the contents.[Method] Taking Quercus aquifolioides scrub which widely distributed in Zheduoshan in the west of Sichuan as the experimental objects,the changes between NSC and the toal nitrogen in various growing seasons at different altitude were studied.[Result] The results showed that the content of NSC in Quercus aquifolioides underground increased with the lift of elevation in the dormancy,but decreased in the early germination,growing period and growth stage.The content of NSC in the ground tissue changed non-linearly with increasing elevation.In addition,the total nitrogen of Quercus aquifolioides organizations was decreasing with increasing elevation in the dormant period,which did not change significantly in the other periods.This result implied that the content of NSC in Quercus aquifolioides underground was more sensitive to temperature.[Conclusion] The experiment laid basis for the exploration of the physical and ecological mechanism of underground plants adaptability to highland environment,their response to global climate changes and adjustment to high altitude ecological system.
文摘The geometries of azobenzene compounds are optimized with B3LYP/6-311G* method, and analyzed with nature bond orbital, then their visible absorption maxima are calculated with TD-DFT method and ZINDO/S method respectively. The results agree well with the observed values. It was found that for the calculation of visible absorption using ZINDO/S method could rapidly yield better results by adjusting OWFπ-π (the relationship between π-π overlap weighting factor) value than by the TD-DFT method. The method of regression showing the linear relationship between OWFπ-π and BLN-N (nitrogen-nitrogen bond lengths) as OWFπ-π=?8.1537+6.5638BLN-N, can be explained in terms of quantum theory, and also be used for prediction of visible absorption maxima of other azobenzne dyes in the same series. This study on molecules’ orbital geometry indicates that their visible ab- sorption maxima correspond to the electron transition from HOMO (the highest occupied molecular orbital) to LUMO (the lowest unoccupied molecular orbital).
基金the National Natural Science Foundation of China (20071024 20371033) and Suzhou University
文摘A stable Pd(II) compound Pd(AETYF)Cl2CH2Cl2 (AETYF = 4?5?diaza-9? (4,5-bis(ethylthio)-1,3-dithiole-2-ylidene)-fluorene) has been synthesized and its crystal structure was determined by X-ray crystallography. The crystal is of monoclinic, space group P21/c with a = 15.249(6), b = 8.619(3), c = 19.078(7) ? b = 106.932(8), C19H18Cl4N2PdS4, Mr = 650.79, V = 2398.6(16) 3, Z = 4, Dc = 1.802 g/cm3, F(000) = 1296, m = 1.579 mm-1, Npar = 268, the final R = 0.0538 and wR = 0.1282 for 5068 observed reflections with I > 2s(I). The crystal structure determi- nation shows that the atoms of the molecule, except two ethyl-groups, are conjugated in a quasi- plane and these molecules are further stacked or contacted via plane to plane or edge to edge p-p interactions, forming parallel molecular chains along the b axis.
文摘A general method is developed to prepare durable hybrid nanocatalysts by nanostructuring the surface of gold wires via simple alloying and dealloying. The resulting nanoporous gold/Au (NPG/Au) wire catalysts possess nanoporous skins with their thicknesses on robust metal wires specified in a highly controllable manner. As a demonstration, the as-obtained NPG/Au was shown to be a highly active, chemo-selective, and recyclable catalyst for the reduction of nitro com- pounds and azides using organosilanes as reducing agents.
基金supported by the National Natural Science Foundation of China (21437003, 21673126, 21621003, 21761142017)the Youth Innovation Promotion Association of CAS (2017493)Young Elite Scientist Sponsorship Program by CAST and Collaborative Innovation Center for Regional Environmental Quality
文摘As a two-dimensional(2D) material, polymeric carbon nitride(g-C_3N_4) nanosheet holds great potentials in environmental purification and solar energy conversion. In this review, we summarized latest progress in the optimization of photocatalytic performance in 2D g-C_3N_4. Some of the latest structural engineering methods were summed up, where the relevant influences on the behaviors of photoinduced species were emphasized. Furthermore, the construction strategies for band structure modulation and charge separation promotion were then discussed in detail. A brief discussion on the opportunity and challenge of 2D g-C_3N_4-based photocatalysis are presented as the conclusion of this review.
基金supported by grants(20292081)from the Ministry of Education,Culture,Sports,Science and Technology,Japan.
文摘Aims Subalpine coniferous species are distributed over a wide range of elevations in which they must contend with stressful conditions,such as high elevations and extended periods of darkness.Two evergreen coniferous species,Abies veitchii and Abies mariesii,dominate at low and high elevations,respectively,in the subalpine zone,central Japan.The aim of this study is to examine the effects of leaf age,elevation and light conditions on photosynthetic rates through changes in morphological and physiological leaf traits in the two species.Methods We here examined effects of leaf age,elevation and light conditions on photosynthesis,and leaf traits in A.veitchii and A.mariesii.Saplings of the two conifers were sampled in the understory and canopy gaps at their lower(1600 m)and upper(2300 m)distribution limits.Important Findings The two species showed similar responses to leaf age and different responses to elevation and light conditions in photosynthesis and leaf traits.The maximum photosynthetic rate of A.veitchii is correlated negatively with leaf mass per area(LMA)and non-structural carbohydrate(NSC)concentration.LMA increased at high elevations in the two species,whereas NSC concentrations increased only in A.veitchii.Therefore,the maximum photosynthetic rate of A.veitchii decreased at high elevations.Furthermore,maximum photosynthetic rates correlate positively with nitrogen concentration in both species.In the understory,leaf nitrogen concentrations decreased and increased in A.veitchii and A.mariesii,respectively.LMA decreased and the chlorophyll-to-nitrogen ratio increased in understory conditions only for A.mariesii,suggesting it has a higher light-capture efficiency in dark conditions than does A.veitchii.This study concluded that A.mariesii has more shade-tolerant photosynthetic and leaf traits and its photosynthetic rate is less affected by elevation compared with A.veitchii,allowing A.mariesii to survive in the understory and to dominate at high elevations.