To understand the dynamics of added nitrogen (N) in alpine meadow and the role of alpine plants and soil microorganisms in the retention of deposited N, the fate of 15 N labeled nitrate and ammonium salts was...To understand the dynamics of added nitrogen (N) in alpine meadow and the role of alpine plants and soil microorganisms in the retention of deposited N, the fate of 15 N labeled nitrate and ammonium salts was determined in an alpine meadow for two months. Two weeks after 15 N application, total recovery of 15 N from NO - 3_ 15 N was 73.5% while it was 78% from NH + 4_ 15 N. More 15 N was recovered in plants than in soil organic matter or in microbial biomass, irrespective of forms of N added. After one month, 70.6% of added NO - 3_ 15 N and 57.4% of NH + 4_ 15 N were recovered in soils and plants. 15 N recovered in soil organic matter decreased greatly while that recovered in plants varied little, irrespective of the form N. Compared with the results of two weeks after 15 N application, more NO - 3_ 15 N than NH + 4_ 15 N was recovered in microbial biomass. Total recovery was 58.4% (six weeks) and 67% (eight weeks) from NO - 3_ 15 N, and 43.1% and 49% from NH + 4_ 15 N, respectively. Both plants and soil microorganism recovered more NO - 3_ 15 N than NH + 4_ 15 N. But plants recovered more 15 N than soil microorganisms. During the whole experiment plants retained more NO - 3_N and 15 N than soil microorganisms while 15 N recovered in inorganic N pool did not exceed 1% due to lower amount of inorganic N. This indicates that plants play more important roles in the retention of deposited N although microbial biomass can be an important sink for deposited N in early days after N application.展开更多
[Objective] This study aimed to investigate the effect of nitrogen fertilizer on photosynthetic rate of Leymus chinensis in the grasslands of different degrading degrees. [Method] With the L. chinensis in Inner Mongol...[Objective] This study aimed to investigate the effect of nitrogen fertilizer on photosynthetic rate of Leymus chinensis in the grasslands of different degrading degrees. [Method] With the L. chinensis in Inner Mongolia Baiyinxile Ranch as the research object, different rations of nitrogen fertilizer were applied to the grassland (0, 30, 50, 80 g/m^2). The effect of different gradients of nitrogen fertilizer on photo- synthetic rate of Leymus chinensis, and the effect on grasslands of different degrading degrees were analyzed. [Result] The photosynthetic rate of L. chinensis in- creased with the increase of nitrogen gradients; in the grassland communities with different degrading degrees, the responses of the photosynthetic rate of L. chinensis to nitrogen fertilizer were different, and the response in the grassland with severe degradation was the best. [Conclusion] Nitrogen fertilizer played an important role in enhancing the restoration degree of grassland.展开更多
文摘To understand the dynamics of added nitrogen (N) in alpine meadow and the role of alpine plants and soil microorganisms in the retention of deposited N, the fate of 15 N labeled nitrate and ammonium salts was determined in an alpine meadow for two months. Two weeks after 15 N application, total recovery of 15 N from NO - 3_ 15 N was 73.5% while it was 78% from NH + 4_ 15 N. More 15 N was recovered in plants than in soil organic matter or in microbial biomass, irrespective of forms of N added. After one month, 70.6% of added NO - 3_ 15 N and 57.4% of NH + 4_ 15 N were recovered in soils and plants. 15 N recovered in soil organic matter decreased greatly while that recovered in plants varied little, irrespective of the form N. Compared with the results of two weeks after 15 N application, more NO - 3_ 15 N than NH + 4_ 15 N was recovered in microbial biomass. Total recovery was 58.4% (six weeks) and 67% (eight weeks) from NO - 3_ 15 N, and 43.1% and 49% from NH + 4_ 15 N, respectively. Both plants and soil microorganism recovered more NO - 3_ 15 N than NH + 4_ 15 N. But plants recovered more 15 N than soil microorganisms. During the whole experiment plants retained more NO - 3_N and 15 N than soil microorganisms while 15 N recovered in inorganic N pool did not exceed 1% due to lower amount of inorganic N. This indicates that plants play more important roles in the retention of deposited N although microbial biomass can be an important sink for deposited N in early days after N application.
基金Supported by the National Natural Science Foundation of China(30771528,30970494)the Special Fund for Environment Protection Research in Public Interest of China(201109025-03B)the Fundamental Research Funds for the Central Universities(DC110105,DC120101142)~~
文摘[Objective] This study aimed to investigate the effect of nitrogen fertilizer on photosynthetic rate of Leymus chinensis in the grasslands of different degrading degrees. [Method] With the L. chinensis in Inner Mongolia Baiyinxile Ranch as the research object, different rations of nitrogen fertilizer were applied to the grassland (0, 30, 50, 80 g/m^2). The effect of different gradients of nitrogen fertilizer on photo- synthetic rate of Leymus chinensis, and the effect on grasslands of different degrading degrees were analyzed. [Result] The photosynthetic rate of L. chinensis in- creased with the increase of nitrogen gradients; in the grassland communities with different degrading degrees, the responses of the photosynthetic rate of L. chinensis to nitrogen fertilizer were different, and the response in the grassland with severe degradation was the best. [Conclusion] Nitrogen fertilizer played an important role in enhancing the restoration degree of grassland.