A novel N-doped TiO2 (N1-N2-TiO2) with substitutional and interstitial N impurities simultaneously was successfully synthesized. The catalyst was characterized by X-ray diffraction, X-ray photoelectron spectroscopy,...A novel N-doped TiO2 (N1-N2-TiO2) with substitutional and interstitial N impurities simultaneously was successfully synthesized. The catalyst was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy, photoluminescence, and electron paramagnetic resonance. The results demonstrated that the nitrogen was substituted for the lattice oxygen atoms, and was also interstitially doped into the TiO2 lattice. The photocatalytic tests indicated that the N1-N2-TiO2 showed the highest photocatalytic activities of all the N-doped TiO2 under visible light, attributing to the synergetic effect of substitutional and interstitial nitrogen of N-doped TiO2.展开更多
Nitrogen-doped anatase TiO 2 microsheets with 65%(001) and 35%(101) exposed faces were fabricated by the hydrothermal method using TiN as precursor in the presence of HF and HCl. The samples were characterized by ...Nitrogen-doped anatase TiO 2 microsheets with 65%(001) and 35%(101) exposed faces were fabricated by the hydrothermal method using TiN as precursor in the presence of HF and HCl. The samples were characterized by scanning electron microscopy,X-ray diffraction,N2 adsorption,X-ray photoelectron spectroscopy,UV-visible spectroscopy,and electrochemical impedance spectroscopy. Their photocatalytic activity was evaluated using the photocatalytic reduction of CO2. The N-doped TiO 2 sample exhibited a much higher visible light photocatalytic activity for CO2 reduction than its precursor TiN and commercial TiO 2(P25). This was due to the synergistic effect of the formation of surface heterojunctions on the TiO 2 microsheet surface,enhanced visible light absorption by nitrogen-doping,and surface fluorination.展开更多
N-doped TiO2 nanoparticle photocatalysts were prepared through a sol-gel procedure using NH4C1 as the nitrogen source and followed by calcination at certain temperature. Systematic studies for the preparation paramete...N-doped TiO2 nanoparticle photocatalysts were prepared through a sol-gel procedure using NH4C1 as the nitrogen source and followed by calcination at certain temperature. Systematic studies for the preparation parameters and their impact on the structure and photocatalytic activity under ultraviolet (UV) and visible light irra-diation were carried out. Multiple techniques (XRD, TEM, DRIF, DSC, and XPS) were commanded to characterize the crystal structures and chemical binding of N-doped TiO2. Its photocatalytic activity was examined by the deg- radation of organic compounds. The catalytic activity of the prepared N-doped TiO2 nanoparticles under visible light (λ〉400nm) irradiation is evidenced by the decomposition of 4-chlorophenol, showing that nitrogen atoms in the N-doped TiO2 nanoparticle catalyst are responsible for the visible light catalytic activity. The N-doped TiO2 nanoparticle catalyst prepared with this modified route exhibits higher catalytic activity under UV irradiation in contrast to TiO2 without N-doping. It is suggested that the doped nitrogen here is located at the interstitial site of TiO2 lattice.展开更多
We developed a novel approach for the preparation of N-doped TiO2 photocatalysts by calcining ammonium titanium oxalate at different temperatures. The structures of N-TiO2 were characterized by powder X-ray diffractio...We developed a novel approach for the preparation of N-doped TiO2 photocatalysts by calcining ammonium titanium oxalate at different temperatures. The structures of N-TiO2 were characterized by powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, diffuse reflectance UV-Vis spectroscopy, and scanning electron microscope. The N-doped TiO2 photocatalysts calcined below 700 ℃ are the pure anatase phase but that calcined at 700 ℃ is a mixture of anatase and rutile phases. The doped N locates at the interstitial site of TiO2 which leads to the narrowing of bad gap of pure anatase N-TiO2. Among all photocatalysts, N-TiO2 photocatalysts calcined at 600 and 400 ℃ exhibit the best performance in the photodegradation of methyl orange under the UV light and all-wavelength light illuminations, respectively; however, because of the perfect crystallinity and the existence of anatase-rutile phase junctions, N-TiO2 photocatalyst calcined at 700 ℃ exhibits the highest specific photodegradation rate, i.e., the highest quantum yield, under both the UV light and all-wavelength light illuminations.展开更多
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20873044) and the Fundamental Research Funds for the Central Universities (No.2009ZZ0032).
文摘A novel N-doped TiO2 (N1-N2-TiO2) with substitutional and interstitial N impurities simultaneously was successfully synthesized. The catalyst was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, diffuse reflectance spectroscopy, photoluminescence, and electron paramagnetic resonance. The results demonstrated that the nitrogen was substituted for the lattice oxygen atoms, and was also interstitially doped into the TiO2 lattice. The photocatalytic tests indicated that the N1-N2-TiO2 showed the highest photocatalytic activities of all the N-doped TiO2 under visible light, attributing to the synergetic effect of substitutional and interstitial nitrogen of N-doped TiO2.
基金supported by the National Basic Research Program of China(973 Program2013CB632402)+7 种基金the National Natural Science Foundation of China(513201050015137219051402025and 21433007)the Natural Science Foundation of Hubei Province(2015CFA001)the Fundamental Research Funds for the Central Universities(WUT:2014-VII-010)the Self-Determined and Innovative Research Funds of State Key Laboratory of Advanced Technology for Material Synthesis and ProcessingWuhan University of Technology(2013-ZD-1)~~
文摘Nitrogen-doped anatase TiO 2 microsheets with 65%(001) and 35%(101) exposed faces were fabricated by the hydrothermal method using TiN as precursor in the presence of HF and HCl. The samples were characterized by scanning electron microscopy,X-ray diffraction,N2 adsorption,X-ray photoelectron spectroscopy,UV-visible spectroscopy,and electrochemical impedance spectroscopy. Their photocatalytic activity was evaluated using the photocatalytic reduction of CO2. The N-doped TiO 2 sample exhibited a much higher visible light photocatalytic activity for CO2 reduction than its precursor TiN and commercial TiO 2(P25). This was due to the synergistic effect of the formation of surface heterojunctions on the TiO 2 microsheet surface,enhanced visible light absorption by nitrogen-doping,and surface fluorination.
基金Supported by the Science and Technology Research Program of Chongqing Education Commission (KJ050702), and the Natural Science Foundation Project of Chongqing Science and Technology(Commission (No.2007BB7208).
文摘N-doped TiO2 nanoparticle photocatalysts were prepared through a sol-gel procedure using NH4C1 as the nitrogen source and followed by calcination at certain temperature. Systematic studies for the preparation parameters and their impact on the structure and photocatalytic activity under ultraviolet (UV) and visible light irra-diation were carried out. Multiple techniques (XRD, TEM, DRIF, DSC, and XPS) were commanded to characterize the crystal structures and chemical binding of N-doped TiO2. Its photocatalytic activity was examined by the deg- radation of organic compounds. The catalytic activity of the prepared N-doped TiO2 nanoparticles under visible light (λ〉400nm) irradiation is evidenced by the decomposition of 4-chlorophenol, showing that nitrogen atoms in the N-doped TiO2 nanoparticle catalyst are responsible for the visible light catalytic activity. The N-doped TiO2 nanoparticle catalyst prepared with this modified route exhibits higher catalytic activity under UV irradiation in contrast to TiO2 without N-doping. It is suggested that the doped nitrogen here is located at the interstitial site of TiO2 lattice.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20773113), the Solar Energy Project of Chinese Academy of Sciences, the Ministry of Education program for PCSIRT (No.IRT0756), and the Max Planck Gesellschaft of Chinese Academy of Sciences partner group.
文摘We developed a novel approach for the preparation of N-doped TiO2 photocatalysts by calcining ammonium titanium oxalate at different temperatures. The structures of N-TiO2 were characterized by powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, N2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy, diffuse reflectance UV-Vis spectroscopy, and scanning electron microscope. The N-doped TiO2 photocatalysts calcined below 700 ℃ are the pure anatase phase but that calcined at 700 ℃ is a mixture of anatase and rutile phases. The doped N locates at the interstitial site of TiO2 which leads to the narrowing of bad gap of pure anatase N-TiO2. Among all photocatalysts, N-TiO2 photocatalysts calcined at 600 and 400 ℃ exhibit the best performance in the photodegradation of methyl orange under the UV light and all-wavelength light illuminations, respectively; however, because of the perfect crystallinity and the existence of anatase-rutile phase junctions, N-TiO2 photocatalyst calcined at 700 ℃ exhibits the highest specific photodegradation rate, i.e., the highest quantum yield, under both the UV light and all-wavelength light illuminations.