Transition metal catalysts M-N-C(M = Co,Fe,Mn) were synthesized by a template-free method by heating meso-tetraphenyl porphyrins(i.e.CoTPP,FeTPPCl,MnTPPCl) precursors.The catalysts were characterized by N2 adsorpt...Transition metal catalysts M-N-C(M = Co,Fe,Mn) were synthesized by a template-free method by heating meso-tetraphenyl porphyrins(i.e.CoTPP,FeTPPCl,MnTPPCl) precursors.The catalysts were characterized by N2 adsorption-desorption,thermogravimetry,high-resolution transmission electron microscopy,and Raman and X-ray photoelectron spectroscopy.The selective oxidation of ethylbenzene with molecular oxygen under a solvent-free condition was carried out to explore the catalytic performance of the M-N-Cs,which exhibited different catalytic performance.That was ascribed to the difference in M(Co,Fe,Mn) and different graphitization degree forming during the heating process,in which M(Co,Fe,Mn) might have different catalytic activity on the formation of the M-N-C catalyst.All the M-N-C composites had remarkable recyclability in the selective oxidation of ethylbenzene.展开更多
Nitrogen doping of activated carbon loading Fe2O3 was performed by annealing in ammonia, and the activity of the modified carbon for NO reduction was studied in the presence of oxygen. Results show that Fe2O3 enhances...Nitrogen doping of activated carbon loading Fe2O3 was performed by annealing in ammonia, and the activity of the modified carbon for NO reduction was studied in the presence of oxygen. Results show that Fe2O3 enhances the amount of surface oxygen complexes and facilitates nitrogen incorporation in the carbon, especially in the form of pyridinic nitrogen. The modified carbon shows excellent activity for NO reduction in the low temperature regime (〈500℃) because of the cooperative effect of Fe2O3 and the surface nitrogen species.展开更多
A series of transition metal nitrides(MxNy,M=Fe,Co,Ni)nanoparticle(NP)composites caged in N-doped hollow porous carbon sphere(NHPCS)were prepared by impregnation and heat treatment methods.These composites combine the...A series of transition metal nitrides(MxNy,M=Fe,Co,Ni)nanoparticle(NP)composites caged in N-doped hollow porous carbon sphere(NHPCS)were prepared by impregnation and heat treatment methods.These composites combine the high catalytic activity of nitrides and the high-efficiency mass transfer characteristics of NHPCS.The oxygen reduction reaction results indicate that Fe2N/NHPCS has the synergistic catalytic performance of higher onset potential(0.96 V),higher electron transfer number(~4)and higher limited current density(1.4 times as high as that of commercial Pt/C).In addition,this material is implemented as the air catalyst for zinc−air battery that exhibits considerable specific capacity(795.1 mA·h/g)comparable to that of Pt/C,higher durability and maximum power density(173.1 mW/cm2).展开更多
基金supported by the National Natural Science Foundation of China (21103045, 1210040, 1103312)State Key Laboratory of Heavy Oil at China University of Petroleum (SKCHOP201504)Key Laboratory of Mineralogy and Metallogeny of the Chinese Academy of Sciences at Guangzhou Institute of Geochemistry(KLMM20150103)~~
文摘Transition metal catalysts M-N-C(M = Co,Fe,Mn) were synthesized by a template-free method by heating meso-tetraphenyl porphyrins(i.e.CoTPP,FeTPPCl,MnTPPCl) precursors.The catalysts were characterized by N2 adsorption-desorption,thermogravimetry,high-resolution transmission electron microscopy,and Raman and X-ray photoelectron spectroscopy.The selective oxidation of ethylbenzene with molecular oxygen under a solvent-free condition was carried out to explore the catalytic performance of the M-N-Cs,which exhibited different catalytic performance.That was ascribed to the difference in M(Co,Fe,Mn) and different graphitization degree forming during the heating process,in which M(Co,Fe,Mn) might have different catalytic activity on the formation of the M-N-C catalyst.All the M-N-C composites had remarkable recyclability in the selective oxidation of ethylbenzene.
文摘Nitrogen doping of activated carbon loading Fe2O3 was performed by annealing in ammonia, and the activity of the modified carbon for NO reduction was studied in the presence of oxygen. Results show that Fe2O3 enhances the amount of surface oxygen complexes and facilitates nitrogen incorporation in the carbon, especially in the form of pyridinic nitrogen. The modified carbon shows excellent activity for NO reduction in the low temperature regime (〈500℃) because of the cooperative effect of Fe2O3 and the surface nitrogen species.
基金the National Natural Science Foundation of China(Nos.51702137,51802128)the Natural Science Foundation of Jiangsu Province,China(No.BK20181013)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(No.18KJB430013)the Foundation of State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering,China(No.2020-KF-20).
文摘A series of transition metal nitrides(MxNy,M=Fe,Co,Ni)nanoparticle(NP)composites caged in N-doped hollow porous carbon sphere(NHPCS)were prepared by impregnation and heat treatment methods.These composites combine the high catalytic activity of nitrides and the high-efficiency mass transfer characteristics of NHPCS.The oxygen reduction reaction results indicate that Fe2N/NHPCS has the synergistic catalytic performance of higher onset potential(0.96 V),higher electron transfer number(~4)and higher limited current density(1.4 times as high as that of commercial Pt/C).In addition,this material is implemented as the air catalyst for zinc−air battery that exhibits considerable specific capacity(795.1 mA·h/g)comparable to that of Pt/C,higher durability and maximum power density(173.1 mW/cm2).