Pyridinic N is widely regarded as the active center while pyrrolic N has low‐activity in metal‐free N‐doped carbon for electrocatalytic CO_(2) reduction reaction(CO_(2)RR)to CO,but this viewpoint remains open to qu...Pyridinic N is widely regarded as the active center while pyrrolic N has low‐activity in metal‐free N‐doped carbon for electrocatalytic CO_(2) reduction reaction(CO_(2)RR)to CO,but this viewpoint remains open to question.In this study,through density functional theoretical calculations,we first illustrate that the intrinsic activity of pyrrolic N is high enough for effectively catalyzing CO_(2)RR,however,due to the interplay with the neighboring pyridinic N sites,the activity of pyrrolic N is dramatically suppressed.Then,experimentally,metal‐free N‐doped carbon spheres(NCS)electrocatalysts without significant pyridinic N content are prepared for CO_(2)RR.The pyrrolic N in NCS shows a direct‐positive correlation with the performance for CO_(2)RR,representing the active center with high activity.The optimum NCS could produce syngas with a wide range of CO/H_(2) ratio(0.09 to 12)in CO_(2)RR depending on the applied potential,meanwhile,the best selectivity of 71%for CO can be obtained.Intentionally adding a small amount of pyridinic N to the optimum NCS dramatically decreases the activity for CO_(2)RR,further verifying the suppressed activity of pyrrolic N sites by the neighboring pyridinic N sites.This work reveals the interaction between a variety of N species in N‐doped carbon,and the potential of pyrrolic N as the new type of active site for electrocatalysts,which can improve our understanding of the electrocatalysis mechanism and be helpful for the rational design of high‐efficient electrocatalysts.展开更多
The chemisorption properties of N^18O adsorption on TiO2(110) surface were investigated by experimental and theoretical methods. The results of temperature programmed desorption (TPD) indicated that the temperatures o...The chemisorption properties of N^18O adsorption on TiO2(110) surface were investigated by experimental and theoretical methods. The results of temperature programmed desorption (TPD) indicated that the temperatures of the three desorption peaks of the main N2 molecules were at (low) temperature of 230 K, 450 K, and (high) temperature of 980 K. This meant that N^18O decomposed and recombined during the process of N2 desorption after N^18O was exposed. Analysis of thestable combination and orbital theory calculation of the surface reaction of NO adsorption on the TiO2(110) cluster modelshowed that there was clear preference for the Ti-NO orientation.展开更多
文摘Pyridinic N is widely regarded as the active center while pyrrolic N has low‐activity in metal‐free N‐doped carbon for electrocatalytic CO_(2) reduction reaction(CO_(2)RR)to CO,but this viewpoint remains open to question.In this study,through density functional theoretical calculations,we first illustrate that the intrinsic activity of pyrrolic N is high enough for effectively catalyzing CO_(2)RR,however,due to the interplay with the neighboring pyridinic N sites,the activity of pyrrolic N is dramatically suppressed.Then,experimentally,metal‐free N‐doped carbon spheres(NCS)electrocatalysts without significant pyridinic N content are prepared for CO_(2)RR.The pyrrolic N in NCS shows a direct‐positive correlation with the performance for CO_(2)RR,representing the active center with high activity.The optimum NCS could produce syngas with a wide range of CO/H_(2) ratio(0.09 to 12)in CO_(2)RR depending on the applied potential,meanwhile,the best selectivity of 71%for CO can be obtained.Intentionally adding a small amount of pyridinic N to the optimum NCS dramatically decreases the activity for CO_(2)RR,further verifying the suppressed activity of pyrrolic N sites by the neighboring pyridinic N sites.This work reveals the interaction between a variety of N species in N‐doped carbon,and the potential of pyrrolic N as the new type of active site for electrocatalysts,which can improve our understanding of the electrocatalysis mechanism and be helpful for the rational design of high‐efficient electrocatalysts.
文摘The chemisorption properties of N^18O adsorption on TiO2(110) surface were investigated by experimental and theoretical methods. The results of temperature programmed desorption (TPD) indicated that the temperatures of the three desorption peaks of the main N2 molecules were at (low) temperature of 230 K, 450 K, and (high) temperature of 980 K. This meant that N^18O decomposed and recombined during the process of N2 desorption after N^18O was exposed. Analysis of thestable combination and orbital theory calculation of the surface reaction of NO adsorption on the TiO2(110) cluster modelshowed that there was clear preference for the Ti-NO orientation.