77 K nitrogen adsorption was the most widely used technique for determining surface area and pore size distribution of coal. Brunauer–Emmett–Teller(BET) and Barrett–Joyner–Halenda(BJH) model are commonly used anal...77 K nitrogen adsorption was the most widely used technique for determining surface area and pore size distribution of coal. Brunauer–Emmett–Teller(BET) and Barrett–Joyner–Halenda(BJH) model are commonly used analytic methods for adsorption/desorption isotherm. A Chinese anthracite coal is tested in this study using an improved experimental method and adsorption isotherm analyzed by three adsorption mechanisms at different relative pressure stages. The result shows that the micropore filling adsorption predominates at the relative pressure stage from 6.8E 7 to 9E 3. Theoretically, BET and BJH model are not appropriate for analyzing coal samples which contain micropores. Two new analytic procedures for coal surface area and pore size distribution calculation are developed in this work. The results show that BET model underestimates surface area, and micropores smaller than 1.751 nm account for 35.5% of the total pore volume and 74.2% of the total surface area. The investigation of surface area and pore size distribution by incorporating the influence of micropore is significant for understanding adsorption mechanism of methane and carbon dioxide in coal.展开更多
In this study, bamboo scaffolding was used to produce activated carbon by carbonization at 600 ℃ and 900 ℃with the purge of nitrogen. The 600 ℃ char was then further modified chemically by acids and alkalis by refl...In this study, bamboo scaffolding was used to produce activated carbon by carbonization at 600 ℃ and 900 ℃with the purge of nitrogen. The 600 ℃ char was then further modified chemically by acids and alkalis by reflux for 6 hours. The produced chars were then characterized by nitrogen adsorption isotherm, He pyncometry, pH, elemental analysis and Boehm titration. For most of the chemically modified carbons, the micropore surface areas and volumes have increased compared with the 600 ~C char, while the mesopore surface areas and volumes slightly decreased, which may have been due to the dissolving of some of the permeated inorganic matter and oxidizing deposited carbon that blocks the pore openings. For the acidic modified carbons, larger amounts of acidic groups were present in the carbons after being activated by phosphoric acid, phosphoric acid furth, er treated with 2 mol-L-1nitric-acid, and calcium hydroxide. Although carbon treated with 2 mol.L-1 and 5 mol·L-1 nitric acid also produced high acidity, the surface areas and pore volumes were relatively low, due to the destruction of pores by nitric acid oxidation. The reduction of porosity may impair the adsorption capacity.展开更多
基金the China Scholarship Council and the Natural Science Foundation of China (No. 51174212)
文摘77 K nitrogen adsorption was the most widely used technique for determining surface area and pore size distribution of coal. Brunauer–Emmett–Teller(BET) and Barrett–Joyner–Halenda(BJH) model are commonly used analytic methods for adsorption/desorption isotherm. A Chinese anthracite coal is tested in this study using an improved experimental method and adsorption isotherm analyzed by three adsorption mechanisms at different relative pressure stages. The result shows that the micropore filling adsorption predominates at the relative pressure stage from 6.8E 7 to 9E 3. Theoretically, BET and BJH model are not appropriate for analyzing coal samples which contain micropores. Two new analytic procedures for coal surface area and pore size distribution calculation are developed in this work. The results show that BET model underestimates surface area, and micropores smaller than 1.751 nm account for 35.5% of the total pore volume and 74.2% of the total surface area. The investigation of surface area and pore size distribution by incorporating the influence of micropore is significant for understanding adsorption mechanism of methane and carbon dioxide in coal.
基金the support of Hong Kong University of Science and Technology through the Undergraduate Research Opportunity Program
文摘In this study, bamboo scaffolding was used to produce activated carbon by carbonization at 600 ℃ and 900 ℃with the purge of nitrogen. The 600 ℃ char was then further modified chemically by acids and alkalis by reflux for 6 hours. The produced chars were then characterized by nitrogen adsorption isotherm, He pyncometry, pH, elemental analysis and Boehm titration. For most of the chemically modified carbons, the micropore surface areas and volumes have increased compared with the 600 ~C char, while the mesopore surface areas and volumes slightly decreased, which may have been due to the dissolving of some of the permeated inorganic matter and oxidizing deposited carbon that blocks the pore openings. For the acidic modified carbons, larger amounts of acidic groups were present in the carbons after being activated by phosphoric acid, phosphoric acid furth, er treated with 2 mol-L-1nitric-acid, and calcium hydroxide. Although carbon treated with 2 mol.L-1 and 5 mol·L-1 nitric acid also produced high acidity, the surface areas and pore volumes were relatively low, due to the destruction of pores by nitric acid oxidation. The reduction of porosity may impair the adsorption capacity.