Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six pr...Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six profiles out of t welve profiles. The results showed that high concentrations were 3.03% to 64.9% higher than the "normal concentrations" in these six profiles. Differences betwe en the high concentrations and the "normal concentrations" were statistically si gnificant. The simultaneous occurrence of high concentrations at/nearby the cano py height and normal concentrations at the trunk space height indicated an efflu x of N2O from foliage to atmosphere. This study afforded evidence supporting tha t plant per se, besides forest soil, was an important source of atmospheric N2O in a forest ecosystem.展开更多
Precipitation is a potential factor that significantly affects plant nutrient pools by influencing biomass sizes and nutrient concentrations. However, few studies have explicitly dissected carbon(C), nitrogen(N) and p...Precipitation is a potential factor that significantly affects plant nutrient pools by influencing biomass sizes and nutrient concentrations. However, few studies have explicitly dissected carbon(C), nitrogen(N) and phosphorus(P) pools between above- and belowground biomass at the community level along a precipitation gradient. We conducted a transect(approx. 1300 km long) study of Stipa purpurea community in alpine steppe on the Tibet Plateau of China to test the variation of N pool of aboveground biomass/N pool of belowground biomass(AB/BB N) and P pool of aboveground biomass/P pool of belowground biomass(AB/BB P) along a precipitation gradient. The proportion of aboveground biomass decreased significantly from mesic to drier sites. Along the belt transect, the plant N concentration was relatively stable; thus, AB/BB N increased with moisture due to the major influences by above- and belowground biomass allocation. However, P concentration of aboveground biomass decreased significantly with increasing precipitation and AB/BB P did not vary with aridity because of the offset effect of the P concentration and biomass allocation. Precipitation gradients do decouple the N and P pool of a S. purpurea community along a precipitation gradient in alpine steppe. The decreasing of N:P in aboveground biomass in drier regions may indicate much stronger N limitation in more arid area.展开更多
Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six pr...Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six profiles out of t welve profiles. The results showed that high concentrations were 3.03% to 64.9% higher than the 'normal concentrations' in these six profiles. Differences betwe en the high concentrations and the 'normal concentrations' were statistically si gnificant. The simultaneous occurrence of high concentrations at/nearby the cano py height and normal concentrations at the trunk space height indicated an efflu x of N2O from foliage to atmosphere. This study afforded evidence supporting tha t plant per se, besides forest soil, was an important source of atmospheric N2O in a forest ecosystem.展开更多
基金Hundred Scientists" Project of Ch inese Academy of Sciences.
文摘Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six profiles out of t welve profiles. The results showed that high concentrations were 3.03% to 64.9% higher than the "normal concentrations" in these six profiles. Differences betwe en the high concentrations and the "normal concentrations" were statistically si gnificant. The simultaneous occurrence of high concentrations at/nearby the cano py height and normal concentrations at the trunk space height indicated an efflu x of N2O from foliage to atmosphere. This study afforded evidence supporting tha t plant per se, besides forest soil, was an important source of atmospheric N2O in a forest ecosystem.
基金supported by the Western Action Plan Project of the Chinese Academy of Sciences(Grant No.KZCX2-XB3-08)the Strategic Pilot Science and Technology Projects of the Chinese Academy of Sciences(Grant No.XDB03030505)the National Key Technology Research and Design Program of China(Grant No.2010BAE00739-03)
文摘Precipitation is a potential factor that significantly affects plant nutrient pools by influencing biomass sizes and nutrient concentrations. However, few studies have explicitly dissected carbon(C), nitrogen(N) and phosphorus(P) pools between above- and belowground biomass at the community level along a precipitation gradient. We conducted a transect(approx. 1300 km long) study of Stipa purpurea community in alpine steppe on the Tibet Plateau of China to test the variation of N pool of aboveground biomass/N pool of belowground biomass(AB/BB N) and P pool of aboveground biomass/P pool of belowground biomass(AB/BB P) along a precipitation gradient. The proportion of aboveground biomass decreased significantly from mesic to drier sites. Along the belt transect, the plant N concentration was relatively stable; thus, AB/BB N increased with moisture due to the major influences by above- and belowground biomass allocation. However, P concentration of aboveground biomass decreased significantly with increasing precipitation and AB/BB P did not vary with aridity because of the offset effect of the P concentration and biomass allocation. Precipitation gradients do decouple the N and P pool of a S. purpurea community along a precipitation gradient in alpine steppe. The decreasing of N:P in aboveground biomass in drier regions may indicate much stronger N limitation in more arid area.
基金Hundred Scientists' Project of Ch inese Academy of Sciences.
文摘Aboveground vertical profiles of N2O concentrations were measured with in two natural coniferous-deciduous mixed forests of 1998 and 1999 in Changbai M ountain. Significant high N2O concentrations were found in six profiles out of t welve profiles. The results showed that high concentrations were 3.03% to 64.9% higher than the 'normal concentrations' in these six profiles. Differences betwe en the high concentrations and the 'normal concentrations' were statistically si gnificant. The simultaneous occurrence of high concentrations at/nearby the cano py height and normal concentrations at the trunk space height indicated an efflu x of N2O from foliage to atmosphere. This study afforded evidence supporting tha t plant per se, besides forest soil, was an important source of atmospheric N2O in a forest ecosystem.