Hydrogenated silicon nitride films as an effective antireflection and passivation coating of silicon solar cell were prepared on p-type polished silicon substrate (1.0 f^em) by direct LF-PECVD (low frequency plasma...Hydrogenated silicon nitride films as an effective antireflection and passivation coating of silicon solar cell were prepared on p-type polished silicon substrate (1.0 f^em) by direct LF-PECVD (low frequency plasma enhanced chemical vapor deposition) of Centrotherm. The preferable passivation effect was obtained and the refractive index was in the range of 2.017-2.082. The refractive index of the hydrogenated silicon nitride films became larger with the increase of the pressure. Fourier transform infrared spectroscopy was used to study the pressure influence on the film structural properties. The results highlighted high hydrogen bond and high Si-N bonds density in the film, which were greatly influenced by the pressure. The passivation effect of the films was infuenced by the Si dangling bonds density. Finally the effective minority liftetime degradation with time was shown and discussed by considering the relationship between the structural properties and passivation.展开更多
The sputtering yield of the Si3N4 thin film is calculated by Monte Carlo method with different parameters. The dependences of the sputtering yield on the incident ion energy, the incident angle and the number of Galli...The sputtering yield of the Si3N4 thin film is calculated by Monte Carlo method with different parameters. The dependences of the sputtering yield on the incident ion energy, the incident angle and the number of Gallium (Ga) and Arsenic (As) ions are predicted. The abnormal sputtering yield for As at 90 keV occurs when the incident angle reaches the range between 82° and 84°.展开更多
A new catalytic chemical vapor process for depositing silicon nitride films using silane hydrazine gaseous mixture is described. This system can be useful at a temperature of lower than 400 ℃. The catalytic process ...A new catalytic chemical vapor process for depositing silicon nitride films using silane hydrazine gaseous mixture is described. This system can be useful at a temperature of lower than 400 ℃. The catalytic process gives more rapid deposition rate than 10 nm/min. The atomic composition ratio, N/Si, which is evaluated by Rutherfold backscattering method is about 1.4 under a given experimental conditions more than the stoichiometric value of 1.33 in Si 3N 4. The infrared transmission spectra show a large dip at 850 cm -1 due to Si-N bonds and no clear dip due to Si-O bonds. High N-H bond density is the evidence that the deposition mechanism is limited by N-N bond breaking of the hydrazine. The H contents, evaluated from Si-H and N-H bonds in the infrared absorption spectra, and the deposition rate are measured as a function of the substrate temperature. In addition some film properties such as the resistivity and the breakdown electric field are presented.展开更多
Amorphous silicon nitride films were deposited by low-frequency plasma-enhanced chemical vapor deposition(LF-PECVD) using silane and nitrogen as precursors. Characteristics such as deposition rate, surface morpholog...Amorphous silicon nitride films were deposited by low-frequency plasma-enhanced chemical vapor deposition(LF-PECVD) using silane and nitrogen as precursors. Characteristics such as deposition rate, surface morphology, and chemical composition were measured by spectroscopic ellipsometry(SE), atomic force mieroscope(AFM) and x-ray photoelectron spectroscopy(XPS). It was shown that amorphous silicon nitride film could be prepared by LF-PECVD with good uniformity and even surface. The XPS result indicated that a small quantity of oxygen was involved in the sample, which was discussed in this paper.展开更多
Ab initio total energy calculations are used to determine the interface structure of GaN films grown on 6H-SiC(0001)with different substrate reconstructions.The results indicate that GaN films grown on bare SiC(0001)a...Ab initio total energy calculations are used to determine the interface structure of GaN films grown on 6H-SiC(0001)with different substrate reconstructions.The results indicate that GaN films grown on bare SiC(0001)are of the Ga-polarity,while GaN films grown on SiC(0001)with Si adlayer are of the N-polarity if there is no N-Si interchange at the interface.With the interchange,the GaN films are of the Ga-polarity.展开更多
Stress controllable silicon nitride(Si Nx) films deposited by plasma enhanced chemical vapor deposition(PECVD) are reported. Low stress Si Nx films were deposited in both high frequency(HF) mode and dual frequency(HF/...Stress controllable silicon nitride(Si Nx) films deposited by plasma enhanced chemical vapor deposition(PECVD) are reported. Low stress Si Nx films were deposited in both high frequency(HF) mode and dual frequency(HF/LF) mode. By optimizing process parameters, stress free(-0.27 MPa) Si Nx films were obtained with the deposition rate of 45.5 nm/min and the refractive index of 2.06. Furthermore, at HF/LF mode, the stress is significantly influenced by LF ratio and LF power, and can be controlled to be 10 MPa with the LF ratio of 17% and LF power of 150 W. However, LF power has a little effect on the deposition rate due to the interaction between HF power and LF power. The deposited Si Nx films have good mechanical and optical properties, low deposition temperature and controllable stress, and can be widely used in integrated circuit(IC), micro-electro-mechanical systems(MEMS) and bio-MEMS.展开更多
文摘Hydrogenated silicon nitride films as an effective antireflection and passivation coating of silicon solar cell were prepared on p-type polished silicon substrate (1.0 f^em) by direct LF-PECVD (low frequency plasma enhanced chemical vapor deposition) of Centrotherm. The preferable passivation effect was obtained and the refractive index was in the range of 2.017-2.082. The refractive index of the hydrogenated silicon nitride films became larger with the increase of the pressure. Fourier transform infrared spectroscopy was used to study the pressure influence on the film structural properties. The results highlighted high hydrogen bond and high Si-N bonds density in the film, which were greatly influenced by the pressure. The passivation effect of the films was infuenced by the Si dangling bonds density. Finally the effective minority liftetime degradation with time was shown and discussed by considering the relationship between the structural properties and passivation.
文摘The sputtering yield of the Si3N4 thin film is calculated by Monte Carlo method with different parameters. The dependences of the sputtering yield on the incident ion energy, the incident angle and the number of Gallium (Ga) and Arsenic (As) ions are predicted. The abnormal sputtering yield for As at 90 keV occurs when the incident angle reaches the range between 82° and 84°.
文摘A new catalytic chemical vapor process for depositing silicon nitride films using silane hydrazine gaseous mixture is described. This system can be useful at a temperature of lower than 400 ℃. The catalytic process gives more rapid deposition rate than 10 nm/min. The atomic composition ratio, N/Si, which is evaluated by Rutherfold backscattering method is about 1.4 under a given experimental conditions more than the stoichiometric value of 1.33 in Si 3N 4. The infrared transmission spectra show a large dip at 850 cm -1 due to Si-N bonds and no clear dip due to Si-O bonds. High N-H bond density is the evidence that the deposition mechanism is limited by N-N bond breaking of the hydrazine. The H contents, evaluated from Si-H and N-H bonds in the infrared absorption spectra, and the deposition rate are measured as a function of the substrate temperature. In addition some film properties such as the resistivity and the breakdown electric field are presented.
文摘Amorphous silicon nitride films were deposited by low-frequency plasma-enhanced chemical vapor deposition(LF-PECVD) using silane and nitrogen as precursors. Characteristics such as deposition rate, surface morphology, and chemical composition were measured by spectroscopic ellipsometry(SE), atomic force mieroscope(AFM) and x-ray photoelectron spectroscopy(XPS). It was shown that amorphous silicon nitride film could be prepared by LF-PECVD with good uniformity and even surface. The XPS result indicated that a small quantity of oxygen was involved in the sample, which was discussed in this paper.
文摘Ab initio total energy calculations are used to determine the interface structure of GaN films grown on 6H-SiC(0001)with different substrate reconstructions.The results indicate that GaN films grown on bare SiC(0001)are of the Ga-polarity,while GaN films grown on SiC(0001)with Si adlayer are of the N-polarity if there is no N-Si interchange at the interface.With the interchange,the GaN films are of the Ga-polarity.
基金supported by the National High Technology Research and Development Program of China(No.2015AA042603)the Fundamental Research Funds for the Central Universities of China(No.106112014CDJZR160001)
文摘Stress controllable silicon nitride(Si Nx) films deposited by plasma enhanced chemical vapor deposition(PECVD) are reported. Low stress Si Nx films were deposited in both high frequency(HF) mode and dual frequency(HF/LF) mode. By optimizing process parameters, stress free(-0.27 MPa) Si Nx films were obtained with the deposition rate of 45.5 nm/min and the refractive index of 2.06. Furthermore, at HF/LF mode, the stress is significantly influenced by LF ratio and LF power, and can be controlled to be 10 MPa with the LF ratio of 17% and LF power of 150 W. However, LF power has a little effect on the deposition rate due to the interaction between HF power and LF power. The deposited Si Nx films have good mechanical and optical properties, low deposition temperature and controllable stress, and can be widely used in integrated circuit(IC), micro-electro-mechanical systems(MEMS) and bio-MEMS.