In this study, the performance of a sequencing batch biofilm reactor(SBBR) for removal of nitrogen and phosphorus from swine wastewater was evaluated. The replacement rate of wastewater was set at 12.5% throughout the...In this study, the performance of a sequencing batch biofilm reactor(SBBR) for removal of nitrogen and phosphorus from swine wastewater was evaluated. The replacement rate of wastewater was set at 12.5% throughout the experiment. The anaerobic and aerobic times were 3 h and 7 h, respectively, and the dissolved oxygen concentration of the aerobic phase was about 3.95 mg·L-1. The SBBR process demonstrated good performance in treating swine wastewater. The percentage removal of total chemical oxygen demand(COD), ammonia nitrogen(NH4+-N), total nitrogen(TN), and total phosphorus(TP) was 98.2%, 95.7%, 95.6%, and 96.2% at effluent concentrations of COD85.6 mg·L-1, NH4+-N 35.22 mg·L-1, TN 44.64 mg·L-1, and TP 1.13 mg·L-1, respectively. Simultaneous nitrification and denitrification phenomenon was observed. Further improvement in removal efficiency of NH4+-N and TN occurred at COD/TN ratio of 11:1, with effluent concentrations at NH4+-N 18.5 mg·L-1and TN 34 mg·L-1, while no such improvement in COD and TP removal was found. Microbial electron microscopy analysis showed that the filler surface was covered with a thick biofilm, forming an anaerobic–aerobic microenvironment and facilitating the removal of nitrogen, phosphorus and organic matters. A long-term experiment(15 weeks) showed that stable removal efficiency for N and P could be achieved in the SBBR system.展开更多
In Wuxi Wastewater Treatment Plant, the Anaerobic, anoxic and oxic (A2/O) process was employed to remove the nitrogen and phosphorus, which exhibited the positive results of the high removal efficiency for phosphorus ...In Wuxi Wastewater Treatment Plant, the Anaerobic, anoxic and oxic (A2/O) process was employed to remove the nitrogen and phosphorus, which exhibited the positive results of the high removal efficiency for phosphorus with a range of 67.7% to 89.9% and an average value of 78.0. The effluent of phosphorus met the national discharge standard. The removal of TN was effected by both BOD variation of influent and wastewater temperature. TN removal was in the range of 28.5% to 55.8% with an average value of 39.4%. The energy cost was 0.15 kWh(m3d)-1 or 1.35 kWh(kgBOD@d)-1. The annual average sludge production was 46.3 m3d-1, the annual average dosage for the dewatering was 40 kg d-1 .展开更多
Phosphorus and nitrogen are known causes of eutrophication in rivers, lakes streams and estuaries. The sources of these nutrients are diverse and they include chemical fertilizers, CAFOs (Confmed Animal Feeding Opera...Phosphorus and nitrogen are known causes of eutrophication in rivers, lakes streams and estuaries. The sources of these nutrients are diverse and they include chemical fertilizers, CAFOs (Confmed Animal Feeding Operations), land application of animal and municipal as well as industrial wastewaters. Application of manure slurries to crop land beyond allowable limits could result in high levels of phosphorus and nitrogen in runoff that negatively impact aquatic animals. Municipal wastewater treatment plants are setup to remove these nutrients from domestic and industrial wastewater through a network of treatment processes. Controlling the discharge of phosphorus and nitrogen in wastewater is a key factor in preventing eutrophication. This paper presents work done to enhance a chemical precipitation process that removes over 90% of dissolved phosphorus and nearly 20% of dissolved nitrogen from both synthetic and municipal wastewaters. The objective of the study is to remove nitrogen and phosphorus from wastewater as dittmarite, a value-added mineral fertilizer found in nature. A laboratory procedure was developed that generated significant quantities of dittmarite from various wastewaters. Pure dittrnarite contains nitrogen, phosphorus and magnesium in approximate molar ratios of 1:1.2:1.2 that can support plant growth. It is produced as a wet precipitate from chemical reactions that occur in the wastewater treatment process; it can be dried for proper handling and utilization. Municipal wastewater treatment plants, high volume fish producers, CAFOs and individual rural homeowners could all benefit from this technology for on-site removal of nitrogen and phosphorus from produced wastewaters.展开更多
It is necessary to adjust reaction pH when a single kind of PO4^3- is used as phosphorus source to remove NH4^+- N in a chemical precipitation process. However, this tedious step could be avoided in experiments that ...It is necessary to adjust reaction pH when a single kind of PO4^3- is used as phosphorus source to remove NH4^+- N in a chemical precipitation process. However, this tedious step could be avoided in experiments that use the buffering effect of the composite phosphate and employ PO4^3- and HPO4^2- as phosphorus sources, pH was controlled by properly changing the proportion of PO4^3- to HPO4^2-. The influences of pH, material proportion and different addition modes of magnesium on NH4^+-N removal efficiency were investigated, with NH4^3--N concentration in influent being 200 mg/L. It showed that the ratio of HPO4^2- : PO4^3- was concerned with phosphorus and NH4^+-N removal. Under the condition that the total amount of phosphate is definite, the removal efficiency of NH4^+-N decreased with the enhancement of HPO4^2- concentration, while the efficiency of phosphorus increased. When increasing PO4^3- concentration, it benefited the removal of NH4^+-N, but the remaining phosphorus was high. The results showed that NH4^+-N concentration decreased from the initial 200 mg/L to 39.14 mg/L with the remaining PO4^3- at 5.14 mg/L if the ratio of HPO4^2- : PO4^3- remained at 1:3.展开更多
There is recent trend of providing additional treatment of wastewater beyond tertiary level. The purpose is to refine water to a quality that is safe for reuse for unrestricted irrigation and other non potable uses. F...There is recent trend of providing additional treatment of wastewater beyond tertiary level. The purpose is to refine water to a quality that is safe for reuse for unrestricted irrigation and other non potable uses. For this purpose, Kuwait has built and operated an advanced wastewater treatment plant with capacity of 500,000 m3·dl. This plant providing treatment beyond tertiary utilizes the process of Ultra Filtration (UF) and Reverse Osmosis (RO). The reject water of this unit contains high concentration of total nitrogen and total phosphate. Safe disposal of this water into the environment or possible reuse needs substantial reduction of these chemicals. In this study, a bench scale up-flow sludge blanket filtration system was investigated. The system operated with an average Hydraulic-Retention Time (HRT) of 19 h, whereas, sludge age varied within the range of 14 days to 16.5 days. The results show that the average removal efficiencies of the system for Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD) were over 86% and 82% respectively. The phosphate and nitrogen's average removal were found to be 50% and 45% respectively.展开更多
Constructed rhizofiltration is a relatively new technology and has potential in agricultural wastewater treatment. It has been reported to reduce heavy metals in wastewater but no substantive work has been reported ab...Constructed rhizofiltration is a relatively new technology and has potential in agricultural wastewater treatment. It has been reported to reduce heavy metals in wastewater but no substantive work has been reported about its ability to remove nitrogen and phosphorus, particularly in agricultural wastewater. If this technology's worth in nutrient removal from wastewater can be proved, it can save time as well as reducing wastewater treatment cost. Influent and effluent nitrogen and phosphate concentrations in the constructed rhizofiltration were measured and it was found that there was a significant difference between the two water samples (P = 0.01). It was also found that more nitrogen and phosphate were retained by planted region (P = 0.01) compared to unplanted (P = 0.02), demonstrating high removal efficiency in the planted region than in the unplanted region. Eighty six percent (86%) removal efficiency of phosphorus was achieved at some points in the planted region while 71% was achieved for nitrogen. These results indicate that constructed rhizofiltration systems, if properly constructed and planted with macrophytes and maintained, can be used for nitrogen and phosphorus removal in wastewater and thus could be used as an alternative technology for agricultural wastewater treatment.展开更多
基金Supported by the Beijing Municipal Science and Technology Program(Z121100001512008)
文摘In this study, the performance of a sequencing batch biofilm reactor(SBBR) for removal of nitrogen and phosphorus from swine wastewater was evaluated. The replacement rate of wastewater was set at 12.5% throughout the experiment. The anaerobic and aerobic times were 3 h and 7 h, respectively, and the dissolved oxygen concentration of the aerobic phase was about 3.95 mg·L-1. The SBBR process demonstrated good performance in treating swine wastewater. The percentage removal of total chemical oxygen demand(COD), ammonia nitrogen(NH4+-N), total nitrogen(TN), and total phosphorus(TP) was 98.2%, 95.7%, 95.6%, and 96.2% at effluent concentrations of COD85.6 mg·L-1, NH4+-N 35.22 mg·L-1, TN 44.64 mg·L-1, and TP 1.13 mg·L-1, respectively. Simultaneous nitrification and denitrification phenomenon was observed. Further improvement in removal efficiency of NH4+-N and TN occurred at COD/TN ratio of 11:1, with effluent concentrations at NH4+-N 18.5 mg·L-1and TN 34 mg·L-1, while no such improvement in COD and TP removal was found. Microbial electron microscopy analysis showed that the filler surface was covered with a thick biofilm, forming an anaerobic–aerobic microenvironment and facilitating the removal of nitrogen, phosphorus and organic matters. A long-term experiment(15 weeks) showed that stable removal efficiency for N and P could be achieved in the SBBR system.
文摘In Wuxi Wastewater Treatment Plant, the Anaerobic, anoxic and oxic (A2/O) process was employed to remove the nitrogen and phosphorus, which exhibited the positive results of the high removal efficiency for phosphorus with a range of 67.7% to 89.9% and an average value of 78.0. The effluent of phosphorus met the national discharge standard. The removal of TN was effected by both BOD variation of influent and wastewater temperature. TN removal was in the range of 28.5% to 55.8% with an average value of 39.4%. The energy cost was 0.15 kWh(m3d)-1 or 1.35 kWh(kgBOD@d)-1. The annual average sludge production was 46.3 m3d-1, the annual average dosage for the dewatering was 40 kg d-1 .
文摘Phosphorus and nitrogen are known causes of eutrophication in rivers, lakes streams and estuaries. The sources of these nutrients are diverse and they include chemical fertilizers, CAFOs (Confmed Animal Feeding Operations), land application of animal and municipal as well as industrial wastewaters. Application of manure slurries to crop land beyond allowable limits could result in high levels of phosphorus and nitrogen in runoff that negatively impact aquatic animals. Municipal wastewater treatment plants are setup to remove these nutrients from domestic and industrial wastewater through a network of treatment processes. Controlling the discharge of phosphorus and nitrogen in wastewater is a key factor in preventing eutrophication. This paper presents work done to enhance a chemical precipitation process that removes over 90% of dissolved phosphorus and nearly 20% of dissolved nitrogen from both synthetic and municipal wastewaters. The objective of the study is to remove nitrogen and phosphorus from wastewater as dittmarite, a value-added mineral fertilizer found in nature. A laboratory procedure was developed that generated significant quantities of dittmarite from various wastewaters. Pure dittrnarite contains nitrogen, phosphorus and magnesium in approximate molar ratios of 1:1.2:1.2 that can support plant growth. It is produced as a wet precipitate from chemical reactions that occur in the wastewater treatment process; it can be dried for proper handling and utilization. Municipal wastewater treatment plants, high volume fish producers, CAFOs and individual rural homeowners could all benefit from this technology for on-site removal of nitrogen and phosphorus from produced wastewaters.
文摘It is necessary to adjust reaction pH when a single kind of PO4^3- is used as phosphorus source to remove NH4^+- N in a chemical precipitation process. However, this tedious step could be avoided in experiments that use the buffering effect of the composite phosphate and employ PO4^3- and HPO4^2- as phosphorus sources, pH was controlled by properly changing the proportion of PO4^3- to HPO4^2-. The influences of pH, material proportion and different addition modes of magnesium on NH4^+-N removal efficiency were investigated, with NH4^3--N concentration in influent being 200 mg/L. It showed that the ratio of HPO4^2- : PO4^3- was concerned with phosphorus and NH4^+-N removal. Under the condition that the total amount of phosphate is definite, the removal efficiency of NH4^+-N decreased with the enhancement of HPO4^2- concentration, while the efficiency of phosphorus increased. When increasing PO4^3- concentration, it benefited the removal of NH4^+-N, but the remaining phosphorus was high. The results showed that NH4^+-N concentration decreased from the initial 200 mg/L to 39.14 mg/L with the remaining PO4^3- at 5.14 mg/L if the ratio of HPO4^2- : PO4^3- remained at 1:3.
文摘There is recent trend of providing additional treatment of wastewater beyond tertiary level. The purpose is to refine water to a quality that is safe for reuse for unrestricted irrigation and other non potable uses. For this purpose, Kuwait has built and operated an advanced wastewater treatment plant with capacity of 500,000 m3·dl. This plant providing treatment beyond tertiary utilizes the process of Ultra Filtration (UF) and Reverse Osmosis (RO). The reject water of this unit contains high concentration of total nitrogen and total phosphate. Safe disposal of this water into the environment or possible reuse needs substantial reduction of these chemicals. In this study, a bench scale up-flow sludge blanket filtration system was investigated. The system operated with an average Hydraulic-Retention Time (HRT) of 19 h, whereas, sludge age varied within the range of 14 days to 16.5 days. The results show that the average removal efficiencies of the system for Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD) were over 86% and 82% respectively. The phosphate and nitrogen's average removal were found to be 50% and 45% respectively.
文摘Constructed rhizofiltration is a relatively new technology and has potential in agricultural wastewater treatment. It has been reported to reduce heavy metals in wastewater but no substantive work has been reported about its ability to remove nitrogen and phosphorus, particularly in agricultural wastewater. If this technology's worth in nutrient removal from wastewater can be proved, it can save time as well as reducing wastewater treatment cost. Influent and effluent nitrogen and phosphate concentrations in the constructed rhizofiltration were measured and it was found that there was a significant difference between the two water samples (P = 0.01). It was also found that more nitrogen and phosphate were retained by planted region (P = 0.01) compared to unplanted (P = 0.02), demonstrating high removal efficiency in the planted region than in the unplanted region. Eighty six percent (86%) removal efficiency of phosphorus was achieved at some points in the planted region while 71% was achieved for nitrogen. These results indicate that constructed rhizofiltration systems, if properly constructed and planted with macrophytes and maintained, can be used for nitrogen and phosphorus removal in wastewater and thus could be used as an alternative technology for agricultural wastewater treatment.